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Recurring themes

« Do not equate Al with Generative Al

« Surprisingly, Al should be avoided as far as possible

« Al is actually not one single thing — the only unifying theme is a lack of fixed logic
» Most effective applications use multiple methods, both Al and non-Al

« When in doubt, always return to the concept of a single neuron

« Avoid anthropomorphising



Where are we today?

THE FOUR INDUSTRIAL REVOLUTIONS

o ]

INDUSTRY 1.0 INDUSTRY 2.0 INDUSTRY 3.0 INDUSTRY 4.0
Mechanization Electrification Automatization Cyber-Physical Systems
Mechanization and the Mass production assembly Automated production, The Sman Factory
introduction of steam and lines using electrical power computers, IT-systems and Autonomous systems, loT,

water power robotics machine learning



Some
practical Al
applications

Range of stock, bond, and blended allocation total returns
Rolling annualized total returns, 1950 - 2022
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Sources: Barclays, FactSet, Federal Reserve, Robert Shiller, Strategas/Ibbotson, J.P. Morgan Asset Management. Returns shown are
rolling monthly returns from 1950 to 2022. Stocks represent the S&P 500 Shiller Compaosite, and Bonds represent
Strategas/Ibbotson government bonds and corporate bonds for periods from 1950 to 2017, then the average of Bloomberg U.S.
Aggregate Total Return Index and Bloomberg U.S. Treasury Total Return index from 2017 to 2022. 50/50 portfolio is rebalanced
monthly and assumes no cost. Analysis is based on the J.P. Morgan Guide to the Markets - Principles for Successful Long-term
Investing. *Actual worst 5-year rolling return of hypothetical 50/50 portfolio: -0.068%. Data as of December 31, 2022.
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“A Learning Approach for Discovering Cost-Efficient Integrated Sourcing and Routing Strategies in E-Commerce”
Omkar Shelke, Pranavi Pathakota, Anandsingh Chauhan, Hardik Meisheri, Harshad Khadilkar, Balaraman Ravindran



Solution steps

Generate new
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Single-agent Al for robotics: Sense-Analyse-Respond




Single-agent Al for robotics: Sense-Analyse-Respond
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one-hot encoding “A generalized reinforcement learning algorithm for online 3d bin-packing”
of proposed location Richa Verma, Aniruddha Singhal, Harshad Khadilkar, Ansuma Basumatary, Siddharth Nayak, Harsh

Vardhan Singh, Swagat Kumar, Rajesh Sinha



Multi-agent Al needs negotfiation




Multi-agent Al needs negotfiation

— . Step 2:

éﬁnuting

“Multi-agent learning of efficient fulfilment and routing strategies in e-commerce”
Omkar Shelke, Pranavi Pathakota, Anandsingh Chauhan, Harshad Khadilkar, Hardik Meisheri, Balaraman Ravindran



Multi-agent Al needs negotfiation
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Other considerations

Delays: Communication channels, Processing, Action

“Revisiting state augmentation methods for reinforcement learning with stochastic delays”
S Nath, M Baranwal, H Khadilkar

Errors: Measurement noise, Modelling simplifications

“Follow your Nose: Using General Value Functions for Directed Exploration in Reinforcement Learning”
D Kalwar, O Shelke, S Nath, H Meisheri, H Khadilkar

Adversaries: Unintentional, Intentional

“Sample Efficient Training in Multi-Agent Adversarial Games with Limited Teammate Communication”
H Meisheri, H Khadilkar

Ethics: Fairness, Bias, Liability

“A novel data augmentation technique for out-of-distribution sample detection using compounded corruptions”
R Hebbalaguppe, SS Ghosal, J Prakash, H Khadilkar, C Arora



Other considerations: Delays

Information state
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Other considerations: Adversaries
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Other considerations: Ethics
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Return to recurring themes

« Do not equate Al with Generative Al

« Surprisingly, Al should be avoided as far as possible

« Al is actually not one single thing — the only unifying theme is a lack of fixed logic
» Most effective applications use multiple methods, both Al and non-Al

« When in doubt, always return to the concept of a single neuron

« Avoid anthropomorphising
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