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Sigmoid neuron
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Softmax

 σ is the softmax function

 Z is the input vector of size K

 The RHS gives the ith component of the output 
vector

 Input to softmax and output of softmax are of 
the same dimension 
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Cross Entropy Function
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x varies over N data instances, c varies over C classes
P is target distribution; Q is observed distribution



Sigmoid and Softmax: weight change rule

With Cross Entropy Loss, the change in any 
weight is 

learning rate * 

diff between target and observed 
outputs * 

input at the connection



General Backpropagation Rule
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Vanishing/Exploding Gradient
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RELU and Vanishing Gradient

y=relu(x)=max(0,x)

dy/dx 

= 0 for x<o

= 1 for x>0

= 0  (forced to be 0 at x=0, though 
does not exit)



End of main points



Important concepts associated 
with FFNN-BP



How does BP work?

 Input propagation forward and error 
propagation backward (e.g. XOR)
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Work it out !

1) In the XOR network, if the activation function of the hidden layer

neurons is changed from sigmoid to the ReLU function how will the

weight update rule change for minimizing the ‘total sum-squared error’

of the network?

2) Suppose we have two neurons each in both the hidden and the output

layer. Softmax is used at the output. Find out the weight update

expressions for the following two cases:

a) The hidden layer uses ReLU activation.

b) The hidden layer uses sigmoid activation.
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Note: The whole structure shown in earlier slide is reducible 
to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:
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For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Because when we add these 
inequalities after adjusting for sign, we get 0>1.6!

Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 
single linear neuron, hence no a additional power 
due to hidden layer.

3. Non-linearity is essential for power.
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Local Minima
Due to the Greedy 

nature of BP, it can 
get stuck in local 
minimum m and will 
never be able to 
reach the global 
minimum g as the 
error can only 
decrease by weight 
change.



Momentum factor
1. Introduce momentum factor.

 Accelerates the movement out of the trough.

 Dampens oscillation inside the trough.

 Choosing  β : If β is large, we may jump over the 
minimum.
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Symmetry breaking

 If mapping demands different weights, but we start 
with the same weights everywhere, then BP will  
never converge.
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Symmetry breaking: understanding 
with proper diagram
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Formal Logic



Theory of CS

 Theory A

 Logic

 Theory B

 Algorithm an Complexity



Concepts, Axioms, Rule

 Some foundational questions for 
Mechanization or Automation of Knowledge 
Representation and Reasoning:
 What are symbols and concepts (well formed formulae)

 What are the self evident and ground truths in the system 
(axiomatization)

 What is the validity of the inference (soundness and 
consistency)

 Is the inference system powerful enough to capture reality 
(completeness)

 Can it be implemented in Turing machine (derivability and 
complexity)



Case study: Propositional calculus

Propositions

− Stand for facts/assertions

− Declarative statements

− As opposed to interrogative statements (questions) or 

imperative statements (request, order)

Operators

AND (/\), OR (\/), NOT (¬), IMPLICATION (=>)

=> and ¬ form a minimal set (can express other operations)

- Prove it.

Tautologies are formulae whose truth value is always T, whatever 

the assignment is



Model

In propositional calculus any formula with n propositions has 2n models 

(assignments)

- Tautologies evaluate to T in all models.

Examples: 

1) 

2) 

-De Morgan with AND

PP 

)()( QPQP 



Example

 Prove                                       is a 
Tautology.

 Proof by Truth Table

T T F F T

T F T T T

F T T T T

F F T T T

)~(~)(~ QPQP 

)(~ QPL PQ QPR ~~  RL



Formal Systems

 Rule governed

 Strict description of structure and rule application

 Constituents

 Symbols 

 Well formed formulae

 Inference rules

 Assignment of semantics

 Notion of proof

 Notion of soundness, completeness, consistency, 

decidability etc.



Hilbert's formalization of propositional calculus

1. Elements are propositions : Capital letters

2. Operator is only one :       (called implies)

3. Special symbol F (called 'false')

4. Two other symbols : '(' and ')'

5. Well formed formula is constructed according to the grammar

WFF P|F|WFFWFF

6. Inference rule : only one

Given        AB and 

A

write B

known as MODUS PONENS



7. Axioms : Starting structures
A1: 

A2:

A3

This formal system defines the propositional calculus

))(( ABA 

)))()(())((( CABACBA 

)))((( AFFA 



Notion of proof
1. Sequence of well formed formulae

2. Start with a set of hypotheses

3. The expression to be proved should be the last line in the 

sequence

4. Each intermediate expression is either one of the hypotheses 

or one of the axioms or the result of modus ponens

5. An expression which is proved only from the axioms and 

inference rules is called a THEOREM within the system



Example of proof

From P and  and               prove R

H1: P

H2: 

H3: 

i) P H1

ii) H2

iii) Q MP, (i), (ii)

iv) H3

v) R MP, (iii), (iv)

QP 

QP 

QP 

RQ 

RQ 

RQ 



Prove that is a THEOREM 

i) A1 : P for A and B

ii) A1: P for A and for B

iii) 

A2: with P for A, for B and P for C

iv) MP, (ii), (iii)

v) MP, (i), (iv)

)( PP 

))(( PPPP 

)( PPP 

))]())((()))(([( PPPPPPPPP 

)( PP 

)())(( PPPPP 

)( PP 

)( PP 



Shorthand
1. is written as and called 'NOT P'

2. is written as and called                                     

'P OR Q’

3. is written as and called 

'P AND Q'

Exercise: (Challenge)

- Prove that 

¬ P FP

))(( QFP  )( QP

)))((( FFQP  )( QP

))(( AA 



A very useful theorem (Actually a meta 
theorem, called deduction theorem)

Statement
If
A

1
, A

2
, A

3
............. A

n
├ B

then
A

1
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2
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3
, ...............A

n-1
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├ is read as 'derives'
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Use of Deduction Theorem
Prove 

i.e.,

├ F (M.P)

A├ (D.T)

├ (D.T)

Very difficult to prove from first principles, i.e., using axioms and 
inference rules only

))(( AA 

))(( FFAA 

FAA ,

FFA  )(

))(( FFAA 



Prove

i.e. 

├ F

├ (D.T)

├ Q (M.P with A3)

P├ 

├

)( QPP 

))(( QFPP 

FQFPP  ,,

FPP , FFQ  )(

QFP  )(

))(( QFPP 



More proofs

))(()(.3

)()(.2

)()(.1

QPQQP

PQQP

QPQP









Important to note

 Deduction Theorem is a meta-theorem 
(statement about the system)

 PP is a theorem (statement 
belonging to the system)

 The distinction is crucial in AI

 Self reference, diagonalization

 Foundation of Halting Theorem, Godel 
Theorem etc.



Example of ‘of-about’  
confusion

 “This statement is false”

 Truth of falsity cannot be decided

 Another example: “A city has a barber 
that shaves ALL AND ONLY those who 
do NOT shave themselves; Question-
does the barber shave himself?”

 Cannot be answered



Soundness, Completeness &
Consistency

Syntactic 
World

----------
Theorems, 

Proofs

Semantic
World

----------
Valuation,
Tautology

Soundness

Completeness

* *



 Soundness

 Provability                    Truth

 Completeness

 Truth Provability



 Soundness: Correctness of the System

 Proved entities are indeed true/valid

 Completeness: Power of the System

 True things are indeed provable



TRUE 
Expression

s

System

Outside
Knowledge

Validation



Consistency

The System should not be able to 

prove both P and ~P, i.e., should not be 

able to derive 

F



Examine  the  relation  between

Soundness

& 

Consistency

Soundness Consistency



If a System is inconsistent, i.e., can derive

F , it can prove any expression to be a

theorem. Because

F  P is a theorem



InconsistencyUnsoundness
To show that

FP is a theorem

Observe that

F,  PF   ⊢ F By D.T. 

F   ⊢ (PF)F;  A3 

⊢ P

i.e. ⊢ FP

Thus, inconsistency implies unsoundness



UnsoundnessInconsistency

 Suppose we make the Hilbert System of 
propositional calculus unsound by introducing 
(A /\ B) as an axiom

 Now AND can be written as
 (A(BF  )) F 

 If we assign F  to A, we have

 (F (BF  )) F 

 But (F (BF  )) is an axiom (A1)

 Hence F is derived



Inconsistency is a Serious issue. 

Informal Statement of Godel Theorem:

If a sufficiently powerful system is complete it is 
inconsistent.

Sufficiently powerful: Can capture at least 
Peano Arithmetic



Introduce Semantics in 
Propositional logic

Valuation Function V

Definition of V

V(F ) = F

Where F is called ‘false’ and is one of the two 
symbols (T, F)

Semantic ‘false’

Syntactic ‘false



V(F ) = F

V(AB) is defined through what is called the 
truth table

V(A) V(B) V(AB)

T F F
T T T
F F T
F T T



Tautology

An expression ‘E’ is a tautology if

V(E) = T

for all valuations of constituent propositions

Each ‘valuation’ is called a ‘model’.



To see that

(FP) is a tautology

two models
V(P) = T
V(P) = F

V(FP) = T for both



FP  is a theorem

FP  is a tautology

Soundness Completeness



If a system is Sound & Complete, it does not

matter how you “Prove” or “show the validity”

Take the Syntactic Path or the Semantic Path



Syntax vs. Semantics issue

Refers to

FORM   VS.   CONTENT

Tea

(Content)Form



Form & Content

Godel,  Escher,  Bach

By  D. Hofstadter

logician

painter
musician



Problem

(P Q)(P Q)

Semantic Proof
A B

P Q P     Q P     Q AB

T F F T T

T T T T T

F F F F T

F T F T T



To show syntactically

(P Q) (P Q)

i.e.

[(P (Q F )) F ]

[(P F ) Q]



If we can establish

(P (Q F )) F ,

(P F  ), Q F   ⊢ F

This is shown as 

Q F     hypothesis

(Q F ) (P (Q F)) A1



QF; hypothesis

(Q F )(P(Q F )); A1

P(Q F ); MP

F; MP

Thus we have a proof of the line we 
started with



Predicate calculus

Introduce through the “Himalayan 
Club Example”



Himalayan Club example

 Introduction through an example (Zohar Manna, 
1974):
 Problem: A, B and C belong to the Himalayan club. 

Every member in the club is either a mountain 
climber or a skier or both. A likes whatever B 
dislikes and dislikes whatever B likes. A likes rain 
and snow. No mountain climber likes rain. Every 
skier likes snow. Is there a member who is a 
mountain climber and not a skier?

 Given knowledge has: 
 Facts

 Rules



Example contd.

 Let mc denote mountain climber and sk denotes skier. 
Knowledge representation in the given problem is as follows:

1. member(A)
2. member(B)
3. member(C)
4. ∀x[member(x) → (mc(x) ∨ sk(x))]
5. ∀x[mc(x) → ~like(x,rain)]
6. ∀x[sk(x) → like(x, snow)]
7. ∀x[like(B, x) → ~like(A, x)]
8. ∀x[~like(B, x) → like(A, x)]
9. like(A, rain)
10. like(A, snow)
11. Question: ∃x[member(x) ∧ mc(x) ∧ ~sk(x)]

 We have to infer the 11th expression from the given 10. 
 Done through Resolution Refutation.



Club example: Inferencing
1. member(A)

2. member(B)

3. member(C)

4.

– Can be written as 

–

5.

–

6.

–

7.

–

))]()(()([ xskxmcxmemberx 

))]()(()([ xskxmcxmember 
)()()(~ xskxmcxmember 

)],()([ snowxlkxskx 

),()(~ snowxlkxsk 

)],(~)([ rainxlkxmcx 

),(~)(~ rainxlkxmc 

)],(~),([ xBlkxAlikex 

),(~),(~ xBlkxAlike 



8.

–

9.

10.

11.

– Negate–

)],(),([~ xBlkxAlkx 

),(),( xBlkxAlk 

),( rainAlk

),( snowAlk

)](~)()([ xskxmcxmemberx 

)]()(~)([~ xskxmcxmemberx 



 Now standardize the variables apart which 

results in the following
1. member(A)

2. member(B)

3. member(C)

4.

5.

6.

7.

8.

9.

10.

11.

)()()(~ 111 xskxmcxmember 

),()(~ 22 snowxlkxsk 

),(~)(~ 33 rainxlkxmc 

),(~),(~ 44 xBlkxAlike 

),(),( 55 xBlkxAlk 

),( rainAlk

),( snowAlk

)()(~)(~ 666 xskxmcxmember 



),(~),(~ 44 xBlkxAlike  ),( snowAlk

),(~ snowBlk ),()(~ 22 snowxlkxsk 

)()()(~ 111 xskxmcxmember )(~ Bsk

)()(~ BmcBmember  )(Bmember

)(Bmc)()(~)(~ 666 xskxmcxmember 

)()(~ BskBmember  )(~ Bsk

)(~ Bmember )(Bmember

7

10

12 5

13 4

14 2

11

15

16 13

17 2



Well known examples in 
Predicate Calculus

 Man is mortal : rule

∀x[man(x) → mortal(x)]

 shakespeare is a man
man(shakespeare)

 To infer shakespeare is mortal
mortal(shakespeare)



Predicate Calculus: origin

 Predicate calculus originated in language

Sentence

PredicateSubject

Grass   is   green

Subject
Predicate

green(grass)

},{: FTDP 

D : Domain



Predicate Calculus: only for declarative 
sentences

 Is grass green? (Interrogative)

 Oh, grass is green! (Exclamatory)

 Grass which is supple is green

Declarative Sentence

PredicateSubject

))(green)(supple))(grass( xxxx 



Predicate Calculus: more expressive 
power than propositional calculus

 2 is even and is divisible by 2: P1

 4 is even and is divisible by 2: P2

 6 is even and is divisible by 2: P3

Generalizing,

)),2()()((( xdividesxevenxIntegerx 



Predicate Calculus: finer than 
propositional calculus

1. Finer Granularity (Grass is green, ball is green, leaf is 
green (green(x)))

2. Succinct description for infinite number of statements 
which would need ∝ number of properties

3 place predicate
Example: x gives y to z give(x,y,z)

4 place predicate
Example: x gives y to z through w give(x,y,z,w)



Double causative in Hindi giving 
rise to higher place predicates

 जॉन ने खाना खाया
John ne khana khaya
John <CM> food ate
John ate food
eat(John, food)

 जॉन ने जैक को खाना खखलाया
John ne Jack ko khana khilaya
John <CM> Jack <CM> food fed
John fed Jack
eat(John, Jack, food)

 जॉन ने जैक को जजल के द्वारा खाना खखलाया
John ne Jack ko Jill ke dvara khana khilaya
John <CM> Jack <CM> Jill <CM> food made-to-eat
John fed Jack through Jill
eat(John, Jack, Jill, food)


