CS217: Artificial Intelligence and Machine Learning (associated lab: CS240)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay

Week7 of 17feb25, Predicate Calculus, Search in Chess

Main points covered: week6 of 10feb25

Important pointes associated with FFNN BP

Local Minima

Momentum Factor

Symmetry Breaking

Hilbert's formalization of propositional calculus

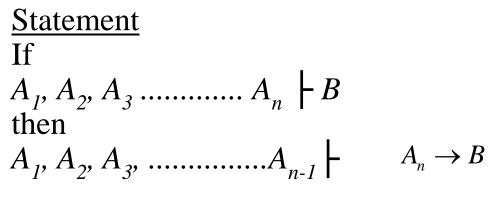
- 1. Elements are *propositions* : Capital letters
- 2. Operator is only one : \rightarrow (called implies)
- 3. Special symbol *F* (called 'false')
- 4. Two other symbols : '(' and ')'
- 5. Well formed formula is constructed according to the grammar $WFF \rightarrow P/F/WFF \rightarrow WFF$
- 6. Inference rule : only one

Given $A \rightarrow B$ and

A

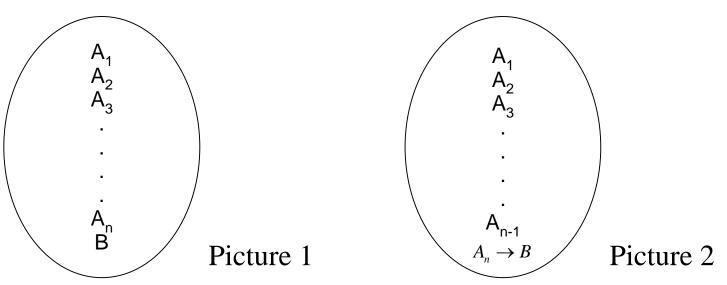
write *B*

known as MODUS PONENS

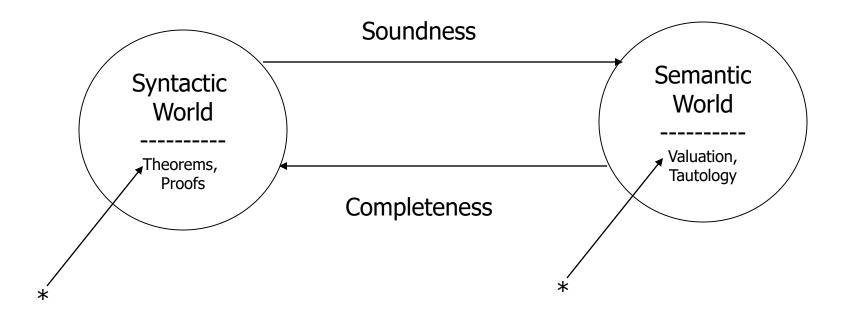

7. Axioms : Starting structures A1: $(A \rightarrow (B \rightarrow A))$

A2:
$$((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$$

A3
$$(((A \to F) \to F) \to A)$$


This formal system defines the propositional calculus

A very useful theorem (Actually a meta theorem, called deduction theorem)



- is read as 'derives'

Given

Soundness, Completeness & Consistency

Consistency

The System should not be able to

prove both P and ~P, *i.e.*, should not be

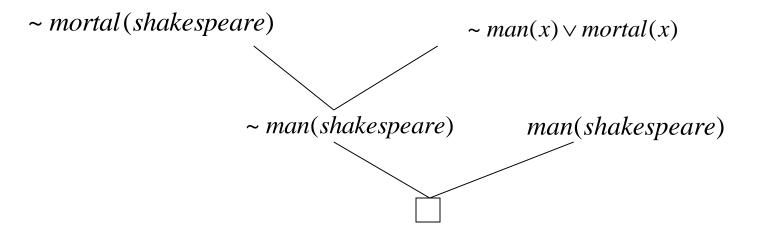
able to derive

End of main points

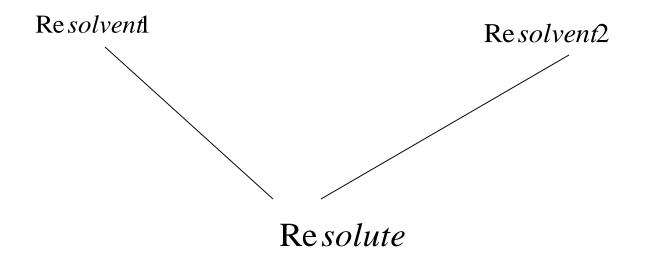
Predicate calculus

Insight into resolution

Resolution - Refutation


 $\blacksquare man(x) \rightarrow mortal(x)$

- Convert to clausal form
- \sim man(shakespeare) \lor mortal(x)
- Clauses in the knowledge base
 - \sim man(shakespeare) \lor mortal(x)
 - man(shakespeare)
 - mortal(shakespeare)


Resolution – Refutation contd

• Negate the goal

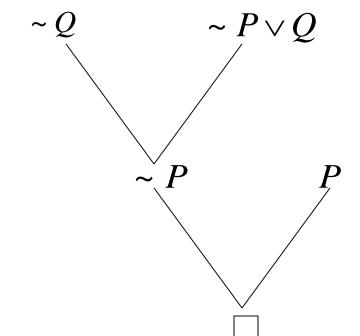
- ~man(shakespeare)
- Get a pair of resolvents

Resolution Tree

Search in resolution

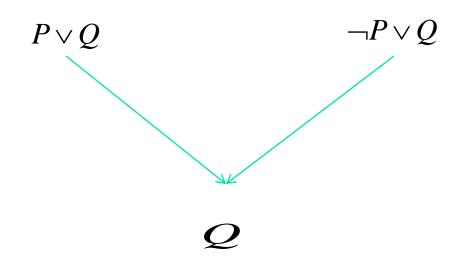
- Heuristics for Resolution Search
 - Goal Supported Strategy
 - Always start with the negated goal
 - Set of support strategy
 - Always one of the resolvents is the most recently produced resolute

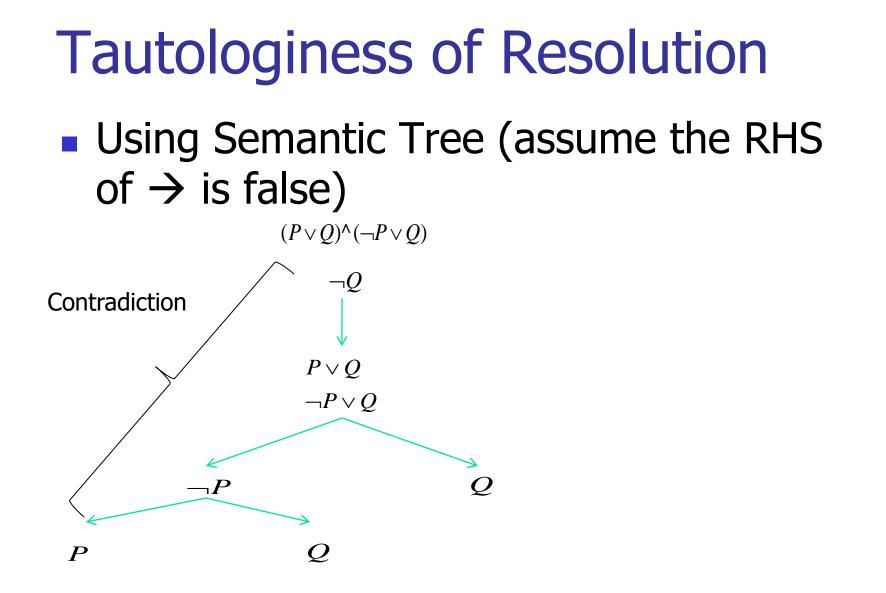
Inferencing in Predicate Calculus


Forward chaining

- Given P, $P \rightarrow Q$, to infer Q
- P, match *L*.*H*.*S* of
- Assert Q from *R*.*H*.*S*
- Backward chaining
 - Q, Match *R*.*H*.*S* of $P \rightarrow Q$
 - assert P
 - Check if P exists
- Resolution Refutation
 - Negate goal
 - Convert all pieces of knowledge into clausal form (disjunction of literals)
 - See if contradiction indicated by null clause an be derived

1. *P*


 $\sim O$


- 2. $P \rightarrow Q$ converted to $\sim P \lor Q$
 - Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.

Theoretical basis of Resolution

- Resolution is proof by contradiction
- resolvent1 .AND. resolvent2 => resolute is a tautology

Theoretical basis of Resolution (cont ...)

Monotone Inference

- Size of Knowledge Base goes on increasing as we proceed with resolution process since intermediate resolvents added to the knowledge base
- Non-monotone Inference
 - Size of Knowledge Base does not increase
 - Human beings use non-monotone inference

Back to Himalayan Club

Himalayan Club example

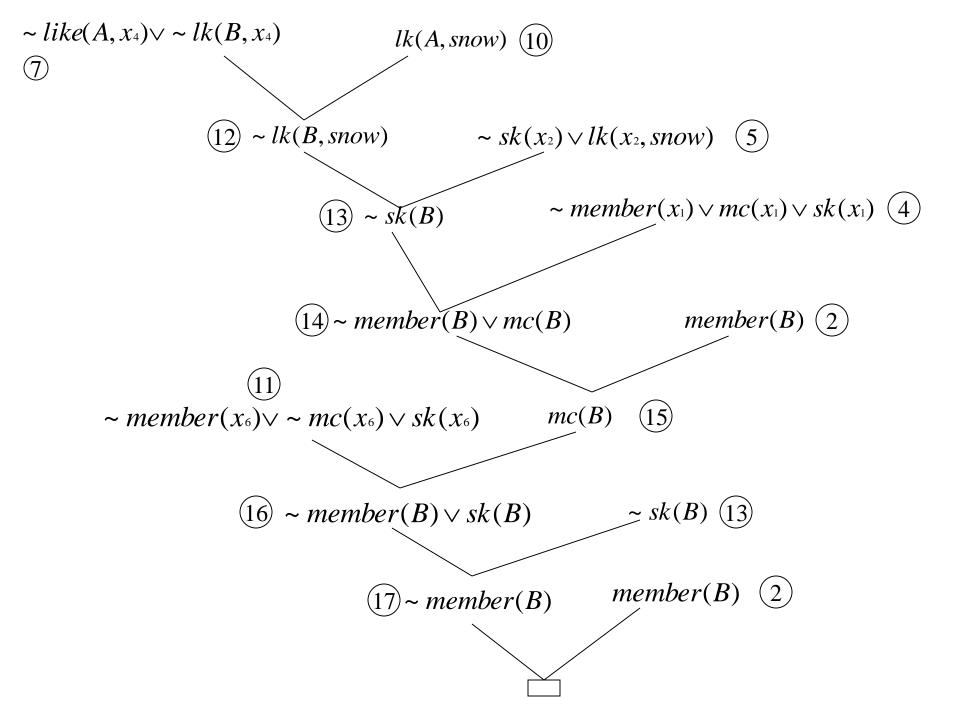
- Introduction through an example (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
 - Facts
 - Rules

Example contd.

- Let *mc* denote mountain climber and *sk* denotes skier.
 Knowledge representation in the given problem is as follows:
 - 1. member(A)
 - 2. member(B)
 - 3. member(C)
 - 4. $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
 - 5. $\forall x[mc(x) \rightarrow \sim like(x, rain)]$
 - 6. $\forall x[sk(x) \rightarrow like(x, snow)]$
 - $z \forall x[like(B, x) \rightarrow \sim like(A, x)]$
 - 8. $\forall x [\sim like(B, x) \rightarrow like(A, x)]$
 - <u>9.</u> like(A, rain)
 - *10. like(A, snow)*
 - 11. Question: $\exists x [member(x) \land mc(x) \land \sim sk(x)]$
- We have to infer the 11th expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

- 1. *member(A)*
- 2. member(B)
- 3. *member(C)*
- 4. $\forall x[member(x) \rightarrow (mc(x) \lor sk(x))]$
 - Can be written as - $\sim member(x) \bigvee mc(x) \lor sk(x)$ $(mc(x) \lor sk(x))]$
- 5. $\forall x[sk(x) \rightarrow lk(x, snow)]$ - $\sim sk(x) \lor lk(x, snow)$
- 6. $\forall x[mc(x) \rightarrow \sim lk(x, rain)]$


 $\sim mc(x) \lor \sim lk(x, rain)$

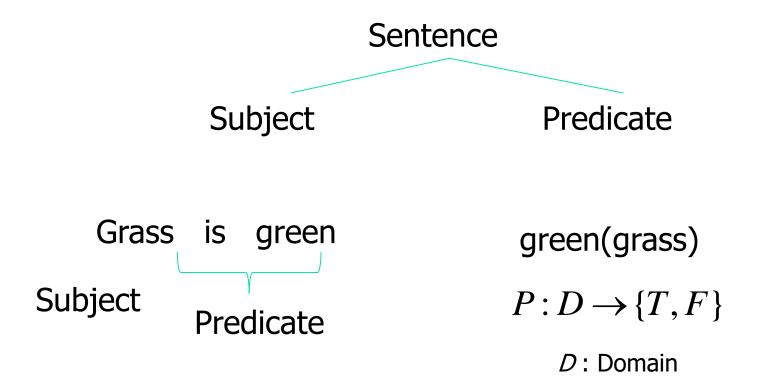
7. $\forall x[like(A, x) \rightarrow ~lk(B, x)]$

$$\sim like(A, x) \lor \sim lk(B, x)$$

- 8. $\forall x [\sim lk(A, x) \rightarrow lk(B, x)]$ _ $lk(A, x) \lor lk(B, x)$
- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. $\exists x [member(x) \land mc(x) \land \sim sk(x)]$
 - Negate- $\forall x [\sim member(x) \lor \sim mc(x) \lor sk(x)]$

- Now standardize the variables apart which results in the following
- 1. *member(A)*
- 2. *member(B)*
- 3. *member(C)*
- 4. ~ member(x_1) \lor mc(x_1) \lor sk(x_1)
- 5. ~ $sk(x_2) \lor lk(x_2, snow)$
- 6. ~ $mc(x_3) \lor \sim lk(x_3, rain)$
- 7. ~ $like(A, x_4) \lor \sim lk(B, x_4)$
- 8. $lk(A, x_5) \vee lk(B, x_5)$
- 9. *lk*(*A*, *rain*)
- 10. lk(A, snow)
- 11. ~ member(x_6) \lor ~ $mc(x_6) \lor$ $sk(x_6)$

Well known examples in Predicate Calculus


Man is mortal : rule

 $\forall x[man(x) \rightarrow mortal(x)]$

- shakespeare is a man man(shakespeare)
- To infer shakespeare is mortal mortal(shakespeare)

Predicate Calculus: origin

Predicate calculus originated in language

Predicate Calculus: only for declarative sentences

Is grass green? (Interrogative)Oh, grass is green! (Exclamatory)

Declarative Sentence

Subject

Predicate

Grass which is supple is green

 $\forall x(\operatorname{grass}(x)) \land \operatorname{supple}(x) \rightarrow \operatorname{green}(x))$

Predicate Calculus: more expressive power than propositional calculus

- 2 is even and is divisible by 2: P1
- 4 is even and is divisible by 2: P2
 6 is even and is divisible by 2: P3
 Generalizing,

 $\forall x ((Integer(x) \land even(x) \Rightarrow divides(2, x)))$

Predicate Calculus: finer than propositional calculus

- Finer Granularity (Grass is green, ball is green, leaf is green (green(x)))
- 2. Succinct description for infinite number of statements which would need \propto number of properties
- 3 place predicate Example: x gives y to z

give(x,y,z)

4 place predicate Example: x gives y to z through w

give(x,y,z,w)

Double causative in Hindi giving rise to higher place predicates

- जॉन ने खाना खाया John ne khana khaya John <CM> food ate John ate food *eat(John, food)*
- जॉन ने जैक को खाना खिलाया John ne Jack ko khana khilaya John <CM> Jack <CM> food fed John fed Jack *eat(John, Jack, food)*
- जॉन ने जैक को जिल के द्वारा खाना खिलाया John ne Jack ko Jill ke dvara khana khilaya John <CM> Jack <CM> Jill <CM> food made-to-eat John fed Jack through Jill *eat(John, Jack, Jill, food)*

PC primitive: N-ary Predicate

 $P(a_1,\ldots a_n)$

 $P: D^n \to \{T, F\}$

- Arguments of predicates can be variables and constants
- Ground instances : Predicate all whose arguments are constants

N-ary Functions

$f: D^n \to D$

president(India) : Droupadi Murmu

- Constants & Variables : Zero-order objects
- Predicates & Functions : First-order objects

Prime minister of Fiji is older than the president of Fiji older(prime_minister(Fiji), president(Fiji))

 $\land \lor \sim \bigoplus \forall \rightarrow \exists$

Universal Quantifier Existential Quantifier All men are mortal $\forall x[man(x) \rightarrow mortal(x)]$ Some men are rich $\exists x [man(x) \land rich(x)]$

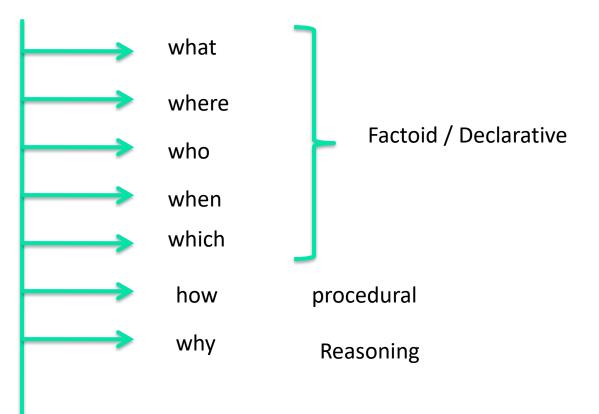
Tautologies

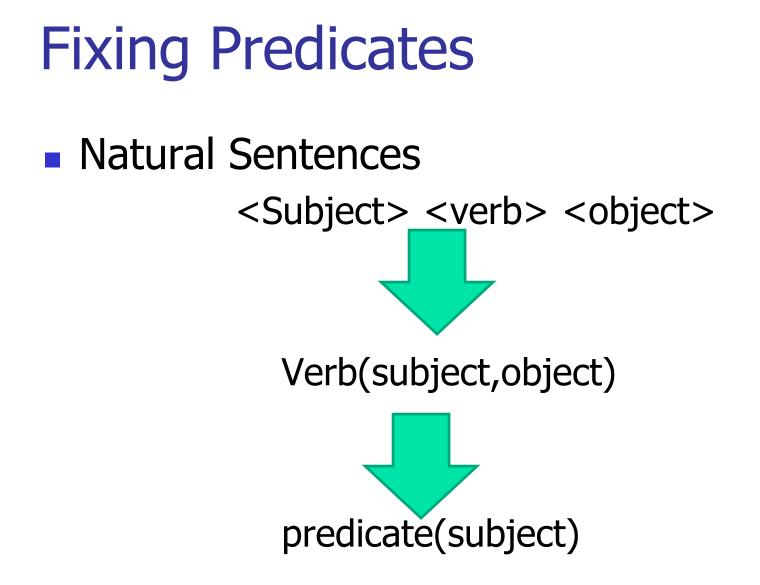
$$\sim \forall x(p(x)) \rightarrow \exists x(\sim p(x))$$

$$\sim \exists x(p(x)) \rightarrow \forall x(\sim p(x))$$

2nd tautology in English:

- Not a single man in this village is educated implies all men in this village are uneducated
- Tautologies are important instruments of logic, but uninteresting statements!


Inferencing: Forward Chaining


- $\blacksquare man(x) \rightarrow mortal(x)$
 - Dropping the quantifier, implicitly Universal quantification assumed
 - man(shakespeare)
- Goal mortal(shakespeare)
 - Found in one step
 - x = shakespeare, unification

Backward Chaining

- $\blacksquare man(x) \rightarrow mortal(x)$
- Goal mortal(shakespeare)
 - x = shakespeare
 - Travel back over and hit the fact asserted
 - man(shakespeare)

Wh-Questions and Knowledge

Examples

Ram is a boy

Boy(Ram)?

Is_a(Ram,boy)?

Ram Plays Football

- Plays(Ram,football)?
- Plays_football(Ram)?

Knowledge Representation of Complex Sentence

"In every city there is a thief who is beaten by every policeman in the city"

Knowledge Representation of Complex Sentence

"In every city there is a thief who is beaten by every policeman in the city"

 $\forall x [city(x) \rightarrow \{ \exists y ((thief(y) \land lives_in (y, x)) \land \forall z (policeman(z, x) \rightarrow beaten_by (z, y))) \}]$

Interpretation in Logic

- Logical expressions or formulae are "FORMS" (placeholders) for whom <u>contents</u> are created through interpretation.
- Example:

$$\exists F[\{F(a) = b\} \land \forall x \{P(x) \to (F(x) = g(x, F(h(x))))\}]$$

- This is a Second Order Predicate Calculus formula.
- Quantification on 'F' which is a function.

Examples

Interpretation:1 *D=N* (natural numbers) a = 0 and b = 1 $x \in N$ P(x) stands for x > 0q(m,n) stands for $(m \times n)$ h(x) stands for (x - 1)Above interpretation defines Factorial

Examples (contd.)

Interpretation:2
 D={strings)
 a = b = λ
 P(x) stands for "x is a non empty string"
 g(m, n) stands for "append head of m to n"

h(x) stands for tail(x)

Above interpretation defines "reversing a string"

Search inside Chess!

Dion Reji & Soham Dahane

IIT Bombay

February 18, 2025

Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

February 18, 2025

< ∃⇒

• Games can be formulated as search problems with:

э

- Games can be formulated as search problems with:
 - State Space

2/38

- Games can be formulated as search problems with:
 - State Space
 - Operators

э

- Games can be formulated as search problems with:
 - State Space
 - Operators
 - Initial State

< □ > < 凸

- Games can be formulated as search problems with:
 - State Space
 - Operators
 - Initial State
 - Goal States

- Games can be formulated as search problems with:
 - State Space
 - Operators
 - Initial State
 - Goal States
- We consider games with two players Black and White

- Games can be formulated as search problems with:
 - State Space
 - Operators
 - Initial State
 - Goal States
- We consider games with two players Black and White
- We visualise these two player games in a game graph

• State: Complete description of game position

< □ > < 凸

∃ →

- State: Complete description of game position
- Components:

3/38

< □ > < /□ >

- State: Complete description of game position
- Components:
 - Current configuration of the game arena

< □ > < 凸

- State: Complete description of game position
- Components:
 - Current configuration of the game arena
 - Player to move

- State: Complete description of game position
- Components:
 - Current configuration of the game arena
 - Player to move
 - Additional information (e.g., castling rights)

< A[™]

- State: Complete description of game position
- Components:
 - Current configuration of the game arena
 - Player to move
 - Additional information (e.g., castling rights)
- State transitions occur through operators

• Operators = Legal moves. What do you mean by legal?

э

- Operators = Legal moves. What do you mean by legal?
- Two distinct sets:

4/38

- Operators = Legal moves. What do you mean by legal?
- Two distinct sets:
 - White's legal moves (O_w)

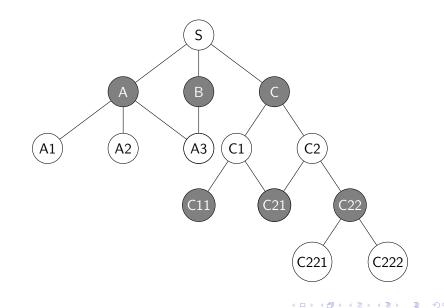
4/38

- Operators = Legal moves. What do you mean by legal?
- Two distinct sets:
 - White's legal moves (O_w)
 - Black's legal moves (O_b)

4/38

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Operators = Legal moves. What do you mean by legal?
- Two distinct sets:
 - White's legal moves (O_w)
 - Black's legal moves (O_b)
- At each state:


< □ > < □ > < □ > < □ > < □ > < □ >

- Operators = Legal moves. What do you mean by legal?
- Two distinct sets:
 - White's legal moves (O_w)
 - Black's legal moves (O_b)
- At each state:
 - Only one set is applicable

< A

- Operators = Legal moves. What do you mean by legal?
- Two distinct sets:
 - White's legal moves (O_w)
 - Black's legal moves (O_b)
- At each state:
 - Only one set is applicable
 - Determined by whose turn it is

A Simple Game with Two Players

• State space:

Dion Reji & Soham Dahane (IIT Bombay)

э

- State space:
 - 8×8 board configuration

∃ →

- State space:
 - 8×8 board configuration
 - Position of all pieces

H 5

Chess as a Search Problem

• State space:

- 8×8 board configuration
- Position of all pieces
- Turn indicator

• State space:

- 8×8 board configuration
- Position of all pieces
- Turn indicator
- Castling rights, en passant possibilities

• State space:

- 8×8 board configuration
- Position of all pieces
- Turn indicator
- Castling rights, en passant possibilities
- Initial state: Standard chess setup

6/38

• State space:

- 8×8 board configuration
- Position of all pieces
- Turn indicator
- Castling rights, en passant possibilities
- Initial state: Standard chess setup
- Goal states: Checkmate positions

• White's operators (O_w):

イロト イヨト イヨト

2

- White's operators (O_w):
 - All legal moves for white pieces

・ロト ・四ト ・ヨト ・ヨト

э

- White's operators (O_w):
 - All legal moves for white pieces
 - Example: e2-e4, Nf3, O-O

< □ > < □ > < □ > < □ > < □ > < □ >

э

- White's operators (O_w):
 - All legal moves for white pieces
 - Example: e2-e4, Nf3, O-O
- Black's operators (*O_b*):

< □ > < □ > < □ > < □ > < □ > < □ >

- White's operators (O_w):
 - All legal moves for white pieces
 - Example: e2-e4, Nf3, O-O
- Black's operators (*O_b*):
 - All legal moves for black pieces

< □ > < 凸

- White's operators (O_w) :
 - All legal moves for white pieces
 - Example: e2-e4, Nf3, O-O
- Black's operators (O_b) :
 - All legal moves for black pieces
 - Same move types as white

- 4 ∃ ▶

- White's operators (O_w):
 - All legal moves for white pieces
 - Example: e2-e4, Nf3, O-O
- Black's operators (O_b) :
 - All legal moves for black pieces
 - Same move types as white
- Each operator transforms current state to new state

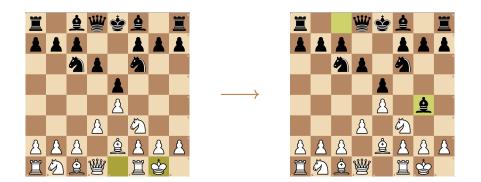
Consider the game of chess with the following configuration of the board.

∃ →

Consider the game of chess with the following configuration of the board.

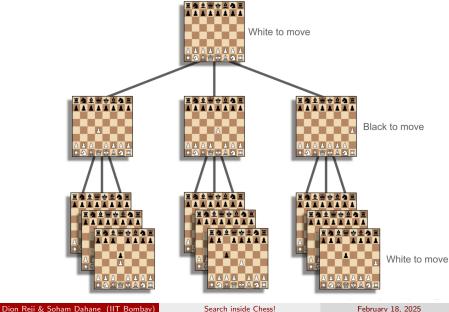
< □ > < 凸

Consider the game of chess with the following configuration of the board. Now Black player makes a move (Bc8 \rightarrow Bg4) indicating an action and taking to a new game state.



< ∃ ►

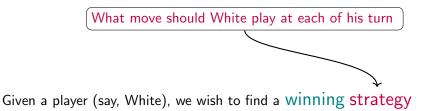
Consider the game of chess with the following configuration of the board. Now Black player makes a move (Bc8 \rightarrow Bg4) indicating an action and taking to a new game state.



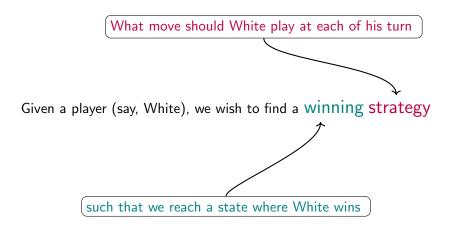
Consider the game of chess with the following configuration of the board. Now Black player makes a move (Bc8 \rightarrow Bg4) indicating an action and taking to a new game state.

< □ > < □ > < □ > < □ > < □ > < □ >

Snippet of Game Graph of chess


10/38

Question


How will we solve a game? What do you mean by solving?

3 N 3

Given a player (say, White), we wish to find a winning strategy

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

✓ △ ▷ < ≥ ▷ < ≥ ▷</p>
February 18, 2025

э

• Obtain the complete game graph - States, Operator, Initial State, Goal States

< □ > < 凸

- Obtain the complete game graph States, Operator, Initial State, Goal States
- What will be our Goal States?

- Obtain the complete game graph States, Operator, Initial State, Goal States
- What will be our Goal States? All states where White wins.

- Obtain the complete game graph States, Operator, Initial State, Goal States
- What will be our Goal States? All states where White wins.
- We start searching the Goal States from Initial State

- Obtain the complete game graph States, Operator, Initial State, Goal States
- What will be our Goal States? All states where White wins.
- We start searching the Goal States from Initial State
- What will our search algorithm return?

- Obtain the complete game graph States, Operator, Initial State, Goal States
- What will be our Goal States? All states where White wins.
- We start searching the Goal States from Initial State
- What will our search algorithm return? Path from start state to Goal states.

Can we getting a winning strategy from the path found by our search algorithm?

14 / 38

• For most games the state space is enoromously large. For chess $\sim 10^{40}$ nodes - practically impossible to search.

15 / 38

< □ > < 凸

- For most games the state space is enoromously large. For chess $\sim 10^{40}$ nodes practically impossible to search.
- Search might not give us a strategy to solve a game. We can rather focus on simpler problems!

- For most games the state space is enoromously large. For chess $\sim 10^{40}$ nodes practically impossible to search.
- Search might not give us a strategy to solve a game. We can rather focus on simpler problems!
- A* excels on **simplified subproblems** or **variants**:
 - **1** Knight's Shortest Path Problem
 - **2** Endgame Tablebase Approximation

• **Objective:** Find the minimum number of moves for a knight to travel from a start square to a target square on an 8 × 8 chessboard.

- **Objective:** Find the minimum number of moves for a knight to travel from a start square to a target square on an 8 × 8 chessboard.
- State Space:

$$S = \{(i,j) \mid 1 \le i, j \le 8\}$$

< □ > < □ > < □ > < □ > < □ > < □ >

- **Objective:** Find the minimum number of moves for a knight to travel from a start square to a target square on an 8 × 8 chessboard.
- State Space:

$$S = \{(i,j) \mid 1 \le i, j \le 8\}$$

• Actions: Legal knight moves:

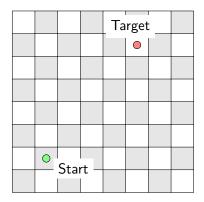
$$(x+2, y+1), (x+2, y-1), (x-2, y+1), (x-2, y-1), (x+1, y+2), (x+1, y-2), (x-1, y+2), (x-1, y-2)$$

16 / 38

- **Objective:** Find the minimum number of moves for a knight to travel from a start square to a target square on an 8 × 8 chessboard.
- State Space:

$$S = \{(i,j) \mid 1 \le i, j \le 8\}$$

• Actions: Legal knight moves:

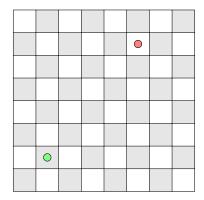

$$(x+2, y+1), (x+2, y-1), (x-2, y+1), (x-2, y-1), (x+1, y+2), (x+1, y-2), (x-1, y+2), (x-1, y-2)$$

- **Cost Function:** g(n) = number of moves taken so far.
- Heuristic: A simple estimate:

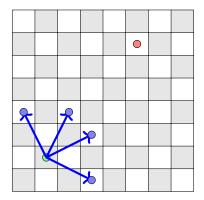
$$h(n)\approx\frac{|x-x_t|+|y-y_t|}{3}$$

Dion Reji & Soham Dahane (IIT Bombay)

Knight's Shortest Path - Start and Target

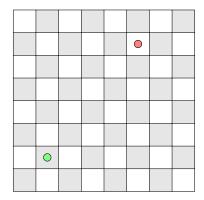


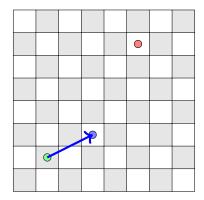
э

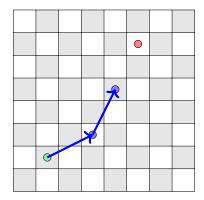

17/38

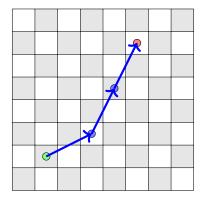
イロト イボト イヨト イヨト

Knight's Shortest Path - Possible Moves


Knight's Shortest Path - Possible Moves




3


18/38

イロン イヨン イヨン

2

19/38

イロン イヨン イヨン

• **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).

20 / 38

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.
- Actions: Legal moves available in the given endgame.

20 / 38

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.
- Actions: Legal moves available in the given endgame.
- **Cost Function:** g(n) = number of moves made.

20 / 38

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.
- Actions: Legal moves available in the given endgame.
- **Cost Function:** g(n) = number of moves made.
- Heuristic: Estimate based on:
 - Material advantage.

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.
- Actions: Legal moves available in the given endgame.
- **Cost Function:** g(n) = number of moves made.
- Heuristic: Estimate based on:
 - Material advantage.
 - Piece mobility.

20 / 38

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.
- Actions: Legal moves available in the given endgame.
- **Cost Function:** g(n) = number of moves made.
- Heuristic: Estimate based on:
 - Material advantage.
 - Piece mobility.
 - Proximity to key squares.

20 / 38

- **Objective:** Determine the sequence of moves to checkmate in a simplified endgame (e.g., King & Queen vs. King).
- State Space: Reduced set of positions with only a few pieces.
- Actions: Legal moves available in the given endgame.
- **Cost Function:** g(n) = number of moves made.
- Heuristic: Estimate based on:
 - Material advantage.
 - Piece mobility.
 - Proximity to key squares.
- Think: Where is it be incorporated to avoid stalemate in the game?

• In any game the heuristic incorporates multiple strategic factors to guide A* search.

< □ > < 凸

- In any game the heuristic incorporates multiple strategic factors to guide A* search.
- Example Heuristic Function:

$$h(n) = d(n, edge) + Mobility(B_k) + M$$

where:

- d(n, edge) is the distance of the Black king from the nearest edge.
- Mobility (B_k) is the number of legal moves available to the Black king.
- *M* is a bonus term if the White king is supporting the queen effectively which can be the manhattan distance between them for example.

21/38

- In any game the heuristic incorporates multiple strategic factors to guide A* search.
- Example Heuristic Function:

$$h(n) = d(n, edge) + Mobility(B_k) + M$$

where:

- d(n, edge) is the distance of the Black king from the nearest edge.
- Mobility (B_k) is the number of legal moves available to the Black king.
- *M* is a bonus term if the White king is supporting the queen effectively which can be the manhattan distance between them for example.

Heuristic Rationale:

• Encourages restricting the Black king's movement.

21/38

- In any game the heuristic incorporates multiple strategic factors to guide A* search.
- Example Heuristic Function:

$$h(n) = d(n, edge) + Mobility(B_k) + M$$

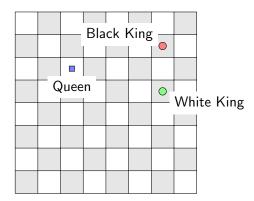
where:

- d(n, edge) is the distance of the Black king from the nearest edge.
- Mobility (B_k) is the number of legal moves available to the Black king.
- *M* is a bonus term if the White king is supporting the queen effectively which can be the manhattan distance between them for example.

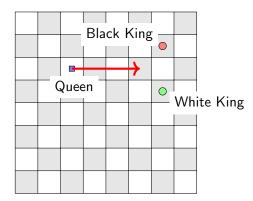
Heuristic Rationale:

- Encourages restricting the Black king's movement.
- Drives the Black king toward a checkmate-friendly position.

- In any game the heuristic incorporates multiple strategic factors to guide A* search.
- Example Heuristic Function:

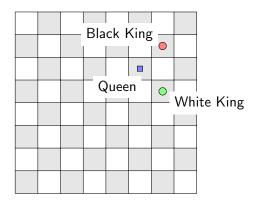

$$h(n) = d(n, edge) + Mobility(B_k) + M$$

where:


- d(n, edge) is the distance of the Black king from the nearest edge.
- Mobility (B_k) is the number of legal moves available to the Black king.
- *M* is a bonus term if the White king is supporting the queen effectively which can be the manhattan distance between them for example.

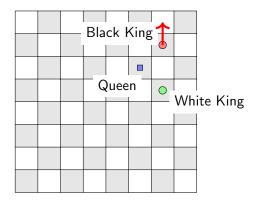
Heuristic Rationale:

- Encourages restricting the Black king's movement.
- Drives the Black king toward a checkmate-friendly position.
- Optimizes coordination between White's king and queen.


< □ > < □ > < □ > < □ > < □ > < □ >

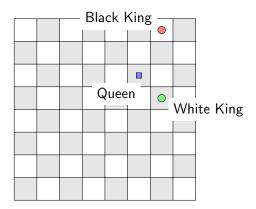
< □ > < □ > < □ > < □ > < □ > < □ >

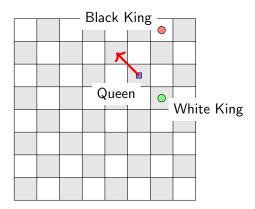
э


23 / 38

< □ > < □ > < □ > < □ > < □ > < □ >

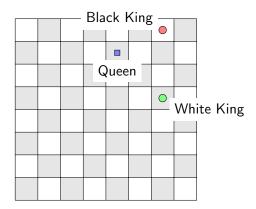
э

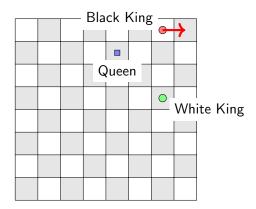

24 / 38


→

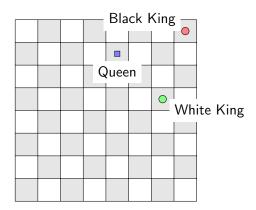
э

Image: A matrix


< ロ > < 同 > < 回 > < 回 > < 回 > <

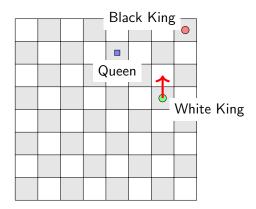

э

27 / 38


イロト イヨト イヨト

イロト イボト イヨト イヨト

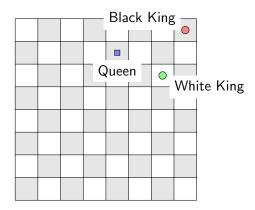
イロト イボト イヨト イヨト



Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

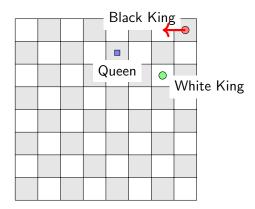
February 18, 2025


イロト イヨト イヨト

э

31/38

イロト イヨト イヨト

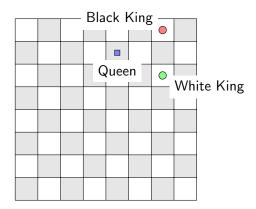


Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

February 18, 2025

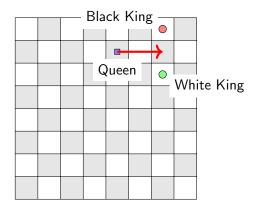
イロト イボト イヨト イヨト



Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

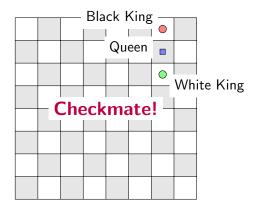
February 18, 2025


イロト イポト イヨト イヨト

э

34 / 38

イロト イポト イヨト イヨト



Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

February 18, 2025

イロト イボト イヨト イヨト

Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

February 18, 2025

< A[™]

- ∢ ⊒ →

How else will solve a game?

• Minimax Algorithm

Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

February 18, 2025

イロト イポト イヨト イヨト

- Minimax Algorithm
- Alpha-Beta Pruning

э

< □ > < □ > < □ > < □ > < □ > < □ >

- Minimax Algorithm
- Alpha-Beta Pruning
- Can we change the structure of graph?

< □ > < 凸

- Minimax Algorithm
- Alpha-Beta Pruning
- Can we change the structure of graph?
- Neural Networks

< A

Thank You...

Dion Reji & Soham Dahane (IIT Bombay)

Search inside Chess!

February 18, 2025

A D N A B N A B N A B N

æ