
CS217: Artificial Intelligence and

Machine Learning

(associated lab: CS240)

Pushpak Bhattacharyya
CSE Dept.,

IIT Bombay

Week2 of 13jan25, A*

Main points covered: week of
6jan25

Course website: very important

 https://www.cse.iitb.ac.in/~cs217/2025/

https://www.cse.iitb.ac.in/~cs217/2025/

AI Perspective (post-web)

Planning

Computer
Vision

NLP

Expert
Systems

Robotics

Search,
Reasoning,
Learning

IR

Turing Test (wikipedia)

 The Turing test, originally
called the imitation
game by Alan Turing in
1950

 Test of a machine's ability
to exhibit intelligent
behavior

 Equivalent to, or
indistinguishable from,
that of a human

The "standard interpretation" of

the Turing test, in which player C,

the interrogator, is given the task

of trying to determine which

player – A or B – is a computer

and which is a human. The

interrogator is limited to using the

responses to written questions to

make the determination

Searl’s Chinese Room Experiment

 A computer program cannot have a "mind", "understanding", or
"consciousness", regardless of how intelligently or human-like
the program may make the computer
behave. Philosopher John Searle presented the argument in his
paper "Minds, Brains, and Programs", published in Behavioral
and Brain Sciences in 1980.

 A human being sits in the room and does exactly as the
program does, gives an impression of “knowing”
Chinese, but in actuality does not understand Chinese.

Grading (Tentative)

 CS217

 Midsem: 30%

 Endsem: 50%

 Quizzes (2): 20%

 CS240

 Weekly lab: each 10%

 Midsem exam: 10%

 Final Viva: 20%

General Graph search Algorithm

S

A CB

F

ED

G

1 103

5 4
6

2
3

7

Graph G = (V,E)

1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

9) OL : Ø

CL : S, A, B, C, D, E,

F, G

Steps of GGS
(principles of AI, Nilsson,)

 1. Create a search graph G, consisting solely of the
start node S; put S on a list called OPEN.

 2. Create a list called CLOSED that is initially empty.

 3. Loop: if OPEN is empty, exit with failure.

 4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.

 5. if n is the goal node, exit with the solution
obtained by tracing a path along the pointers from n
to s in G. (ointers are established in step 7).

 6. Expand node n, generating the set M of its
successors that are not ancestors of n. Install these
memes of M as successors of n in G.

GGS steps (contd.)

 7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either
OPEN or CLOSED). Add these members of M to
OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. For each member of M already on
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

 8. Reorder the list OPEN using some strategy.

 9. Go LOOP.

End of main points

Foundational Points

Foundational Points

 Church Turing Hypothesis

 Anything that is computable is computable
by a Turing Machine

 Conversely, the set of functions computed
by a Turing Machine is the set of ALL and
ONLY computable functions

Turing Machine

Finite State Head (CPU)

Infinite Tape (Memory)

Foundational Points (contd)

 Physical Symbol System Hypothesis
(Newel and Simon)

 For Intelligence to emerge it is enough to
manipulate symbols

Foundational Points (contd)

 Society of Mind (Marvin Minsky)

 Intelligence emerges from the interaction
of very simple information processing units

 Whole is larger than the sum of parts!

Foundational Points (contd)

 Limits to computability

 Halting problem: It is impossible to
construct a Universal Turing Machine that
given any given pair <M, I> of Turing
Machine M and input I, will decide if M
halts on I

 What this has to do with intelligent
computation? Think!

Foundational Points (contd)

 Limits to Automation

 Godel Theorem: A “sufficiently powerful”
formal system cannot be BOTH complete
and consistent

 “Sufficiently powerful”: at least as powerful
as to be able to capture Peano’s Arithmetic

 Sets limits to automation of reasoning

Foundational Points (contd)

 Limits in terms of time and Space

 NP-complete and NP-hard problems: Time
for computation becomes extremely large
as the length of input increases

 PSPACE complete: Space requirement
becomes extremely large

 Sets limits in terms of resources

Two broad divisions of
Theoretical CS

 Theory A

 Algorithms and Complexity

 Theory B

 Formal Systems and Logic

AI as the forcing function

 Time sharing system in OS
 Machine giving the illusion of attending

simultaneously with several people

 Compilers
 Raising the level of the machine for better

man machine interface

 Arose from Natural Language Processing
(NLP)
 NLP in turn called the forcing function for AI

Allied Disciplines

Philosophy Knowledge Rep., Logic, Foundation of

AI (is AI possible?)

Maths Search, Analysis of search algos, logic

Economics Expert Systems, Decision Theory,

Principles of Rational Behavior

Psychology Behavioristic insights into AI programs

Brain Science Learning, Neural Nets

Physics Learning, Information Theory & AI,

Entropy, Robotics

Computer Sc. & Engg. Systems for AI

Symbolic AI

Connectionist AI is contrasted with Symbolic
AI
Symbolic AI - Physical Symbol System
Hypothesis

Every intelligent system can be
constructed by storing and processing
symbols and nothing more is necessary.

Symbolic AI has a bearing on models of
computation such as

Turing Machine
Von Neumann Machine
Lambda calculus

Turing Machine & Von Neumann Machine

Challenges to Symbolic AI

Motivation for challenging Symbolic AI
A large number of computations and

information process tasks that living beings are
comfortable with, are not performed well by
computers!

The Differences

Brain computation in living beings TM computation in
computers
Pattern Recognition Numerical Processing
Learning oriented Programming oriented
Distributed & parallel processing Centralized & serial

processing

Content addressable Location addressable

A* Search: one of the pillars
of AI

Search building blocks

 State Space : Graph of states (Express constraints

and parameters of the problem)

 Operators : Transformations applied to the states.

 Start state : S
0
(Search starts from here)

 Goal state : {G} - Search terminates here.

 Cost : Effort involved in using an operator.

 Optimal path : Least cost path

Examples

Problem 1 : 8 – puzzle

8

4

6

5

1

7

2

1

4

7

63 3

5

8

S

2

G

Tile movement represented as the movement of the blank space.

Operators:

L : Blank moves left

R : Blank moves right

U : Blank moves up

D : Blank moves down
C(L) = C(R) = C(U) = C(D) = 1

GGS is a general umbrella

S

n1

n2

g

C(n1,n2)

h(n2)

h(n1)

OL is a

queue

(BFS)

OL is

stack

(DFS)

OL is accessed by

using a functions

f= g+h

(Algorithm A)

Algorithm A

 A function f is maintained with each node

f(n) = g(n) + h(n), n is the node in the open list

 Node chosen for expansion is the one with least

f value

 For BFS: h = 0, g = number of edges in the

path to S

 For DFS: h = 0, g =

Algorithm A*
 One of the most important advances in AI

 g(n) = least cost path to n from S found so far

 h(n) <= h*(n) where h*(n) is the actual cost of

optimal path to G(node to be found) from n

S

n

G

g(n)

h(n)

“Optimism leads to optimality”

A* Algorithm – Definition and
Properties

 f(n) = g(n) + h(n)
 The node with the least

value of f is chosen from the
OL.

 f*(n) = g*(n) + h*(n),
where,

g*(n) = actual cost of
the optimal path (s, n)

h*(n) = actual cost of
optimal path (n, g)

 g(n) ≥ g*(n)

 By definition, h(n) ≤ h*(n)

S s

n

goal

State space graph G

g(n)

h(n)

8-puzzle: heuristics

2 1 4

7 8 3

5 6

1 6 7

4 3 2

5 8

1 2 3

4 5 6

7 8

s n g

Example: 8 puzzle

h*(n) = actual no. of moves to transform n to g

1. h1(n) = no. of tiles displaced from their destined
position.

2. h2(n) = sum of Manhattan distances of tiles from
their destined position.

h1(n) ≤ h*(n) and h1(n) ≤ h*(n)

h*

h2

h1

Comparison

A* critical points

• Goal

1. Do we know the goal?

2. Is the distance to the goal known?

3. Is there a path (known?) to the goal?

A* critical points

• About the path
Any time before A* terminates there

exists on the OL, a node from the optimal
path all whose ancestors in the optimal
path are in the CL.

This means,

Э in the OL always a node ‘n’ s.t.

g(n) = g*(n)

Key point about A* search

S

Statement:

Let S -n1-n2-n3…ni…-nk-1-
nk(=G) be an optimal path.

At any time during the
search:

1. There is a node ni from the
optimal path in the OL

2. For ni all its ancestors
S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

S
|
n1

|
n2

|
.
.
ni

.

.
nk-1

|
nk =g

Proof of the statement

Proof by induction on iteration no. j

Basis : j = 0, S is on the OL, S satisfies
the statement

Hypothesis : Let the statement be true for
j = p (pth iteration)

Let ni be the node satisfying the
statement

Proof (continued)

Induction : Iteration no. j = p+1

Case 1 : ni is expanded and moved to
the closed list

Then, ni+1 from the optimal path
comes to the OL

Node ni+1 satisfies the statement

(note: if ni+1 is in CL, then ni+2 satisfies
the property)

Case 2 : Node x ≠ ni is expanded

Here, ni satisfies the statement

 Admissibility: An algorithm is called admissible if it
always terminates and terminates in optimal path

 Theorem: A* is admissible.
 Lemma: Any time before A* terminates there exists

on OL a node n such that f(n) <= f*(s)
 Observation: For optimal path s → n1 → n2 → … →

g,
1. h*(g) = 0, g*(s)=0 and
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

A* Algorithm- Properties

f*(ni) = f*(s), ni ≠ s and ni ≠ g

Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)

f*(ni+1) = g*(ni+1) + h*(ni+1)

g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)

Above equations hold since the path is optimal.

A* Properties (contd.)

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a

path exists.

Intuition

S

g(n)

n

h(n)

G

(1) In the open list there always exists a node

n such that f(n) <= f*(S) .

(2) If A* does not terminate, the f value of the

nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma

Any time before A* terminates there exists in the open list a node n'

such that f(n') <= f*(S)

S

n
1

n
2

G

Optimal path
For any node n

i
on optimal path,

f(n
i
) = g(n

i
) + h(n

i
)

<= g*(n
i
) + h*(n

i
)

Also f*(ni) = f*(S)

Let n' be the first node in the optimal path that

is in OL. Since all parents of n' in the optimal

have gone to CL,

g(n') = g*(n') and h(n') <= h*(n')

=> f(n') <= f*(S)

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to

n found so far. If A* does not terminate, g(n) and hence

f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal

Let G be expanded in a non-optimal path.

At the point of expansion of G,

f(G) = g(G) + h(G)

= g(G) + 0

> g*(G) = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction

So path should be optimal

Summary on Admissibility

 1. A* algorithm halts

 2. A* algorithm finds optimal path

 3. If f(n) < f*(S) then node n has to be expanded
before termination

 4. If A* does not expand a node n before termination
then f(n) >= f*(S)

Exercise-1

Prove that if the distance of every node from the goal
node is “known”, then no “search:” is necessary

Ans:

 For every node n, h(n)=h*(n). The algo is A*.

 Lemma proved: any time before A* terminates, there is a node
m in the OL that has f(m) <= f*(S), S= start node (m is the
node on the optimal path all whose ancestors in the optimal
path are in the closed list).

 For m, g(m)=g*(m) and hence f(m)=f*(S).

 Thus at every step, the node with f=f* will be picked up, and
the journey to the goal will be completely directed and definite,
with no “search” at all.

 Note: when h=h*, f value of any node on the OL can never be
less than f*(S).

Exercise-2
If the h value for every node over-estimates the h* value of the

corresponding node by a constant, then the path found need
not be costlier than the optimal path by that constant. Prove
this.

Ans:

 Under the condition of the problem, h(n) <= h*(n) + c.

 Now, any time before the algo terminates, there exists on the
OL a node m such that f(m) <= f*(S)+c.

 The reason is as follows: let m be the node on the optimal path
all whose ancestors are in the CL (there has to be such a node).

 Now, f(m)= g(m)+h(m)=g*(m)+h(m) <= g*(m)+h*(m)+c =
f*(S)+c

 When the goal G is picked up for expansion, it must be the case
that

 f(G)<= f*(S)+c=f*(G)+c

 i.e., g(G)<= g*(G)+c, since h(G)=h*(G)=0.

Better Heuristic Performs
Better

Theorem

A version A2* of A* that has a “better” heuristic than another version

A1* of A* performs at least “as well as” A1*

Meaning of “better”

h2(n) > h1(n) for all n

Meaning of “as well as”

A
1
* expands at least all the nodes of A

2
*

h*(n)

h2(n)

h1(n) For all nodes n,

except the goal

node

Proof by induction on the search tree of A
2
*.

A* on termination carves out a tree out of G

Induction

on the depth k of the search tree of A
2
*. A

1
* before termination

expands all the nodes of depth k in the search tree of A
2
*.

k=0. True since start node S is expanded by both

Suppose A
1
* terminates without expanding a node n at depth (k+1) of

A
2
* search tree.

Since A
1
* has seen all the parents of n seen by A

2
*

g1(n) <= g2(n) (1)

Proof for g1(nk+1) <= g2(nk+1)
(1/3)

All nodes
expanded
by A2*

S

nk+1

nk

Proof for g1(nk+1) <= g2(nk+1)
(2/3)

Case 1: nk is the parent of nk+1 even

in A1*

g1(nk+1) = g1(nk) + cost (nk, nk+1)
<= g2(nk) + cost (nk, nk+1)
<= g2(nk+1)

(1) -> g1(nk) has to be less than g2(nk) as all nodes expanded by A2* have been
expanded by A1* too. Therefore, it can only find a path better than A1* to nk.

…………….(1)

Proof for g1(nk+1) <= g2(nk+1) (3/3)

All nodes
expanded
by A2*

S

nk+1

nk

Case 2: nk is not the parent of nk+1

in A1*

Since A1* has already expanded all
nodes expanded by A2*, if it finds an
alternative path through some
node(s) other than the ones
expanded by A2*, then it has to be
better than the path as per A2*.
Thus,

g1(nk+1) <= g2(nk+1)

Extra
nodes
expanded
by A1*

k+1

S

G

Since A
1
* has terminated without

expanding n,

f1(n) >= f*(S) (2)

Any node whose f value is strictly less

than f*(S) has to be expanded.

Since A
2
* has expanded n

f2(n) <= f*(S) (3)

From (1), (2), and (3)

h1(n) >= h2(n) which is a contradiction. Therefore, A
1
* has to expand

all nodes that A
2
* has expanded.

Exercise

If better means h2(n) > h1(n) for some n and h2(n) = h1(n) for others,

then Can you prove the result ?

