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SVM using SKLEARN

Dataset from the UCI Machine Learning Repository
« https://archive.ics.uci.edu/ml/datasets.php

Number of instances = 748
Number of attributes = 4

Attributes / Features:
= Recency - months since last donation
« Frequency - total number of donation
« Monetary - total blood donated in c.c.
= Time - months since first donation

Class label.:
= A binary variable representing whether he/she donated blood in March 2007
« 1 stands for donating blood; 0 stands for not donating blood



https://archive.ics.uci.edu/ml/datasets.php

False Positives, False Negatives,
Precision, Recall, F-score
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Generalized F-score
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Formal definition of HMM
(1/2)

. V= #states

. M= #distinct observation symbols

. State transition probability distribution:
A={a;}

. The observation symbol probability
distribution in state j, B=b,(k)

. The initial state distribution, 7={r7,}



Formal definition of HMM
(2/2)

. A={a;}
- @5= PGrs=5;| G=5), I<=1] <=N
. B=b(k)
. bk)=P(V, att| g=>5), 1<=j <=N;
I<=k<=M
. 1={mn}
. = Pg,=S), 1<=i<=N



Classic problems with respect to
HMM

1.Given the observation sequence, find the
possible state sequences- Viterbi

2.Glven the observation sequence, find Its
probability- forward/backward algorithm

3.Given the observation sequence find the
HMM prameters.- Baum-Welch algorithm



End of Main points



General Machine Learning Tasks (1/2)

Categories and Algorithms
of Machine learning

Reinforcement Learning

- Classification
- Classification - Clustering

- Classification
- Control

- Clustering
- Regression - Association

Linear, Logistic, Knn, K-Means, Self-training, Graph Q-learning, DPO,
Svm, DT, NN, .. PCA, ... based methods, ... PPO, ...

Others: Self-supervised learning, Active learning, Curriculum learning, Life-long
learning



General Machine Learning Tasks (2/2)

Supervised Unsupervised Semi-supervised

Input Data (X) Labeled Data (X, yi) Unlabeled Data (X,)

(X, y pairs) | | |
| L 4 : I I '

Tralning Data

[ Pattern Discovery ] |
L
| v
[ Semi-Supervised Learning ]

¥

[ Model Training | v

| [ Clustering / Dimensionality Reduction ]

v
l [ Learned Model ]
[ Learned Model ] v |
| Qutput: Patterns or Groupings v
v New Input (X
New Tnput (X') ] |
| [ Environment ] v
v A [ Prediction (y
o (Reward/Punishment)
[ Prediction ] |
l [ Agent |
: |
Ooutput (y") _ ] < Reinforcement
(Action/Policy)
v

[ Environment ]



Classification vs. Regression

Classification: a supervised learning task where the objective is to
predict discrete labels or categories to input data. The model learns to
map input features to one of a limited number of classes.

Examples: image recognition, text classification, etc.

Regression: a supervised learning task where the goal is to predict
continuous numeric values. The model learns the relationship between
input features and a continuous output.

Examples: stock market prediction, weather forecasting, etc.



Linear Regression: Intro

Assumes Linear relationship between Linear Regression with Training Data and Error Lines
dependent (y) and independent (x) R x4 529 ¢
variables. ] .

g = fo(z)
Here, f is the model with parameter 6
that captures the linear relation
between input x to output y.

y=mzx+ C+¢

where €~ N (0,07)
1. Here, € is the error (random noise)
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caused due to experimental design. i | | | | |
2. b is the intercept. i 2 N a "’
3.mis the slope (indicat.ing the _ Assumes the dependent variable
change in y for a one-unit change in x) (y) is continuous in nature.

4. Y is ground truth
5. 9 is predicted output

Simple linear regression:y=b+wx +¢€
Multiple linear regression: y =b + WX, + WyX, + - - - + W X, + €




Linear Regression: Setup and Error

Given a dataset of input-output pairs, {(x;, y: )},_"
We train a linear model f(x; w, b) => w’x + b, where w and b are model parameters.

a2 2
Loss function: Sum Squared Error (SSE) => L(w, b) =Z (vi —9i)" = Z (yi — (b+ wz;))

1=1

Goal: To find the model parameters that minimizes the loss

arg min L(w, b) = arg min Z (y; — — arg min Z (y; — (b+ 1;;:1:1-))2
ur,b ur, b w,b
un L
Compactly we car write: . :
pactly j=w' z, where w = . and r =
wy Ty
Assumptions b 1

1. Linearity: The relationship between predictors and response is linear
Independence: Observations are independent of each other
Homoscedasticity: Error variance is constant across all levels of predictors
Normality: Errors are normally distributed

No multicollinearity: Predictor variables are not highly correlated

ik wWN



_east Square via Calculus

TL

We know, L(w, b) = Z (yi — 3i)" = Z (i — (b+wa;))’
1=1

=1
Compute partial derivatives with respect to b and w and set them to zero:

. JL _ o)) —
For b: = —ZZ (yi — (b4 wz;)) =0 am = —ZZH‘ (yi — (b+wzx;)) =

]
=1
Solving the above equations will give us:
> i1 (@i — ) (yi — 9)
Tl — 2
2 i— (2i — )

b=1y — wxr

w =

This is the solution for simple linear regression.



Multivariate Least Square via Calculus (1/2)

Considering the loss function in compact form

T T

A 2
L(w) = Z (y; — ;)" = Z (y —w' ) = |ly — Xw||3
i=1 i=1
T, U1 \
Let X = : Y = . |. We can rewrite it in terms of matrices:
] Yn )
L(w) = |ly — Xwl|3

= (’J — Xw) " (y — Xw)

= — (Xw)'y —y" (Xw) + (Xw)" (Xw)
=y'y—2y' (Xw)+ (w'X") (Xw)

=y y— (2yTX) w+w' (XTX) w



Multivariate Least Square via Calculus (2/2)

N
oL 0(y'y) 3((2XT3;) “J) N d(w' (X'X)w) 0

ow  dw ow ow
T
02X "y + (XX + (X"X) Jw=0
—2X'y+2(X"X)w=0
2 (X X Jw =2X Ty (Normal equations)
If X is full-rank,

w = (XTX)_l XTy

This also called the Closed-form solution to Linear Regression or Ordinary Least
Square regression.

-1
If this is the closed-form solution then W = (XTX) XT’E:‘

should be the global minimum. To prove this, we need to show that L(w)
Is convex.



Convexity of Sum Square Error

Theorem: Hessian of a convex function is Positive Semi-definite.

Recall: ‘?L = —2XTy+2 (XTX) w

L 0 (E)L)
owdw'  dw \ dw

0 (—2X "y +2(X'X)w)

" ow

0 T 0 T

= 5o (—2X "y) + o (2(X'X)w)
—0+2(xX"x)"
=2X'X
=0

Since the Hessian is always positive semi-definite, the loss function is convex.
So any critical point is a local and global minimum, so the critical point w = (X'X)
minimizes the loss function.



Scenarios of OLS (based on Pseudoinverse)

The matrix (X’X)™1 X7 is known as the pseudoinverse of X, and is usually denoted as
X

Case 1:

- When # of data points (N ) = # of input dimensions (p), can fit data perfectly.

- In other words, w = min , [ly - Xw//,2, so finding the optimal w amounts to
solving the linear system of equations Xw = y.
- If Xis full-rank, w = X" 1y.

Case 2:
- When # of data points (N ) > # of input dimensions (p), in general cannot fit data
perfectly. (In real world scenarios, this is more practical)

- As shown earlier, w = (X7X)"2 X7y = X"y. If we compare these formulas w = X-1y
vs. w = Xy, X" can be seen as a generalization of X! to the case where data cannot
be fit perfectly.

- XT can be interpreted as an operator that finds the best possible solution
to a linear system of equations that has no solution



east Square via Linear Algebra

- - w1 - -
T11 Tz - Tip 1 (51

w, ]
p‘
b Yn

i Lnl Tp2 -~ Tpp 1

In real world scenarios, n >>p
=> no solution generally

y = Xw = (linear comb. of col of X)

col. sp (X) € R", dim(col(X)) £ p
x,"e=0x,e=0, - -,xpTe=0 =>X"e=0

=S x(y-Xw)=0=X'Xw=X"y

= w=(X'X)"1 Xy (Same closed-form solution)

If Rank(X) = p.
= Rank(XTX) = Rank(X) = p
= Then Pseudo inverse can give solution



east Square (Closed Form): Concerns

1. High computational cost

Computing (X7X)™ requires matrix inversion, which generally has a
computational cost on the order of O(p”3), where p is the number of features.

1. Numerical instability

If the features are highly correlated (i.e., multicollinearity), X’X can be nearly
singular. This makes the inversion numerically unstable, leading to unreliable
coefficient estimates.

1. May require large memory

When dealing with large-scale data, storing the entire X matrix and computing
X7X can exceed available memory.



|_east Square via Gradient Descent

-1
w = (XTX) X'y
This set of parameters minimizes the “sum-squared-error” or “mean-squared-

error” e
Remember, SSE = [Y — Xw||3 Oun
V_L _ 5-;1.!'2 _ —QXTy‘l'Q(XTX)ﬂJ

J
| Owp

The gradient descent algorithm: Set w” to a random vector in RP*! for an
initial guess and choose a learning rate parameter v. Compute X 'y (an element
of RP*! and X' X(a (k+ 1) x (k + 1) matrix ).

Iteratively compute

wtt) = () _ ~ (—2XTy + 2(XTX)w(‘))

until the entries a stopping condition is met. For example, stop if the mean
112 :
squared error ||y — Xw) || changes by less than some tolerance on each itera-

tion, or the entries of w*) change by less than some tolerance.
Notice that this algorithm does not need computation of (X " X)~!.



Least Square: Handling Outliers (1/3)

Linear Regression: With and Without Outliers

o
co
30 1 X o0 o .
P & T
X ———
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_____ 2 ]
P
o
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@ Inliers
> Outliers X
——= With Outliers: y = 2.11x + 8.05
-10 4 Without Outliers: y = 2.98x + 5.10 X
0 2 4 6 8 10
X
TL TL
= - -~ 2 —l_ 2 2
Linear regression: L(w) = E (y; — ;)" = E (yi —w' z;)" = |ly — Xwl|3
i=1 =1

TL

Ridge regression: L(w) = Z (i — TUT:I:,;)E + A|w|)z = ly — Xwl||3 + A|wl|3
i=1



east Square: Handling Outliers (2/3)

L(w) = ly — Xwll} + w3

=(y—Xw)' (y— Xo' + I w'w

=y'y— (Xw) y+y (Xw)+ (Xw)" (Xw) + Iw'w
=y'y— 2y Xw+w' (X' X)w+iw'w

-
oL 0 (‘yTy) 0 ((QXT?J') w) N 0 (mT (XTX) *w) N 0 ()vw—rw)

ow  Ow ow Jw ow
0-2XTy+ (XX + (XTX) Jwt A(I+1T)w=0

—2X "y +2 (X" X)w+2Mw =0
—2XTy+2(X"X+AX)w=0
2(X'X+A)w=2X"y

(X' X+XM)w=X"y
w=(X"X+M) X'y



Least Square: Handling Outliers (3/3)

oL

Recall: —— = —2X'y+2(X'X +A)w
ow
L _ 0 (0L

owow"  Ow \ Ow

0

= 50 (—2X "y +2 (X" X +A)w)

d . % .

= 5 (—2X "y) + + 50 (2(X'X + M) w)
—0+2(X X+ M)
=2 (XX + Al)

Claim: XTX + A =0

Proof: w' (X' X +AM)w=w' (X"X)wt+w' (M)w = (Xw)" (Xw)+ w'w =
| X w2 + /\”“—L

For any w # 0, ||w||3 > 0

Since || Xw|3 >0and A > 0, || Xw|3 + A|w|3 >0 Vw# 0



Least Square: Concerns

Linear Regression on Sine Curve Data

1.0 1 ° ® [ ] @ Training Data

L ] °® . —— Fitted Line: y = -0.30x + 0.91

1. Linearity assumption

0.5 A

What about non-linear relation

0.0 A

between X and y? .
- Kernel Trick e
1. Sensitive to large outliers 1ol
It does not detect outliers, rather -5 1 : : 4 * : 6

try to reduce the effect of outliers x
through regularization.

1. Less interpretable



east Square: Code Walk through



Discriminative vs. Generative Model (1/2)

Original Data Discriminative Model Boundary using Logistic Regression

Generative Methods (G):

Generative models aim to capture how the data is generated by modeling the joint
probability distribution p(x,y). In doing so, they “explain” both the features and the
labels, which allows them not only to classify but also to generate new data samples.

A generative model is defined by: p(x,yv/8)=p(x/y,8) p(y|r)

p(y) is the prior distribution over the labels.

p(x|y) is the likelihood, describing how the features x are generated giveny.

0: the parameters of G

. the class prior



Discriminative vs. Generative Model (2/2)

Discriminative Methods (D):

Discriminative models focus directly on modeling the decision boundary between
classes. Instead of modeling the joint distribution, they learn the conditional
probability p(y|x) or a direct mapping from x to y. This often leads to better
classification performance as the model is optimized solely for the prediction task.

- P(X,Y): the true joint distribution of inputs and outputs

- B: the parameters of discriminative model
- D: directly model the conditional probability distribution P(Y|X; 8).

Aspect

Generative Methods

‘ Discriminative Methods

Modeling Objective

Data Generation

Assumptions

Classification

Flexibility vs. Complexity

Models
p(@,y)
Can generate new samples x
given a label y

the joint distribution

Often require assumptions about
data generation (e.g., conditional
independence in Naive Bayes)
Uses Bayes’ rule: p(ylr) o
p(@|y)p(y)

Can be more flexible (e.g., han-
dling missing data) but may need
more data to estimate the full
joint distribution

Models the conditional distribu-
tion p(y|x) or a decision function

Focus solely on predicting v
given x

Fewer assumptions about how
data is generated

Directly estimates p(y|z) or a de-
cision function

Often simpler for classification
and may generalize better for
prediction tasks




Formal representation of D

Y= {yll y2/ ceey yk}

D{(X) = P(y;/X)

D/(X) > D(X), for all j =i => predict y,

@ Dogs o
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Parameter Estimation Methods

These are different methods used to understand how models learn from data. In
other words, how to learn model parameters given the input data.

Criterion MLE MAP LS MoM Bayesian EM

Objective Maximize Maximize Minimize Match sample Compute Maximize
p(x|0) p(0|x) squared error  and theoreti- full posterior expected

cal moments  p(f|z) complete log-
likelihood

Incorporation  No Yes No No Yes (Yes, via

of Prior MAP-EM

variant)

Computational Moderate to Similar to Low (for lin- Low Often high Moderate, it-

Complexity high MLE + prior ear models) (integration or erative

handling sampling)

Applicability Well-speciied When  prior Regression When mo-  Full uncer- Models  with
likelihood knowledge is and  related ments are tainty quantifi- latent  vari-
models available tasks easily = com- cation needed  ables/missing

puted data

Concerns Sensitive  to Dependent on Sensitive to May be biased Computationally May converge
model mis- chosen prior outliers in small sam- intensive to local op-
specification ples tima

Examples Logistic Re- Regularized Linear Re- Moment Bayesian (Gaussian
gression, Regression, gression matching for Linear Regres- Mixture Mod-
HMM (via MAP es- Gaussian or sion, MCMC, els, Hidden
MLE) timates in Beta distribu- Variational Markov Mod-

Bayesian net- tions Inference els

works




MLE - Maximum Likelihood Estimation

X = {Xy, X, ..., X} are i.i.ds from true distribution Px(x)
We want to learn a model with parameter 0 such that the difference between Px(x)

and P(x|©) is minimized. 03] ; e Ditbution
P(x|0) => likelihood of the model 0 == Mot ainodd
N

e
s a a n J . = a ® a -
Given a training dataset D = (x;,y;),_, of n independent and identically distributed samples from the true

distribution P {X , Y), the likelihood function for a discriminative model is:
n
L0 | D) = ][ P (v: | z:;6)
i=1
Taking the logarithm for computational convenience:

log L(6 | D) = » "log P (y; | x:;6)
i—1

The maximum likelihood estimator 1s then:

n
L = argm;lengP[yt- | :;:1';6*)



MAP - Example 1

Xy,..., Xy ~i.i.d Bernoulli(p)

- Samples: xy,xa,..., Ty
r; =0 orl
- Likelihood: L(xzy,...,z,) = H?_l Ix (x5)
-fx(zij)=pifz;=10r fx(z;)=1—pilz; =0
- Let w denote the muuh{-[ of 1 s in the sample

L (iﬂl, “ s mn] _ I}ﬂ-‘(]— - p}ﬂ—ﬂ]

Maximise function: ”Diflerentiate and equate to zero”

— Maximizing L <+ Maximizing log L

hip) =logL = wlogp + (n — ] log(1l — p)
ﬂﬁ:—'—wxlf’p—l—(n—m] ( 1)=10

w(l —p) = [*n —w)p

p=w/n



MAP - Maximum A Posteriori Estimate

MAP estimation incorporates prior knowledge about parameters through Bayes' rule:
P(O1X,Y) x P(Y1X,0)-P(0)

Till now, P(X | #) < any likelihood. |not included prior yet  non-bayesian|
Pz | 0)P(#)
P(x)
Lipap =log P(# | z) =log P(x | #) 4+ log P(#) + C
émap =argmax LyvLe (H} - lﬂg P(H}
7

PO | x) =



Linear : MLE :: Rldge MAP

Y =w J*'l"t‘NN(ﬂﬂ)

for MLE,
Ply|z,w)=N (y;w:;:,t:rz)
_ 1 .2—{1.-—wa]‘-’;2¢2
27
for MAP,
P(z,y,w) e -
Plw|z,y) = “Plr.y) x P(y | #,w)P(z,w)

x Py | z,w)P(w)P(z | w)
log p(w | z,y) = log P(y | z,w) + log P(w)

- Al
(JIVEII:, P(L;J] =N (m] ﬂ] II) — (uniform prior, condition for linear regression)

w* = argmax log p(y | z,w) + log p(w)

w

+ log (E:—(H—uTz)2f2a2) _l_lng( —(w—0) T x" u)

= argmax log
w oV 2w

- (')
202
w® = argmax L(w) Let,o=1

L(w) = - — Allw]?

(vw's)’
— arg min 5 + A|w])?




Sigmoid Function

Logistic Regression: Intro

- Supervised algorithm for classification 5
- Based on “odds ratio”
- 0Odds =P/ (1-P) =>that is why sigmoid is used

Data: {(z;,v:)}i—,, =; € RY
P(y; = 1| x;,w) = Benn (U’ (m [ J“)) = P
1
o(2) 1+ e2
MLE: 6* = argmax F |log(P(x,y) | #)]
o TV

P(x,y,0)P(4, :::]]

= argmax F [lng P(6)P(0, 7)

o Ty

T,

— argmax F [log P(y | z,0), P(x | 8)]
2

0" = argmax F |logp(y | =, )]
o Ty

* . 1 -
0" = argglmﬁ Z log P (y; | zi,0)

i=1



Logistic Regression: MLE

Bern (yi; pi) = p¥ (1 —p;)' ¥

For logistic,

N
i R yi 1=
w" = argmax-—; ,-E_, log P/* (1 — F;)

N
1
— argmin — ~ ; {yilog P; + (1 — y;)log (1 — P;)}

w

Sigmoid Function

1.00

0.50 A

o(z) =

0.25

0.00 -




Logistic Regression: Gradient Descent

W) = O _ v L (w(”)

P,' - O’(Z,')

I
i =W I;

Q _ 0L, . JP; . 0z;
Owi  OP; 0z Owl
oL; -1 [3/:‘ I—Zli]

oP, N |P, 1-P
O —o(2) = o)1 ~ 0(2))
i)

2L —Wx@xO)




Logistic Regression: Gradient Descent

N

. |
— N Z i (1 —pi) — (1 — u;) pil :::§
=1
oLi 1 & -
i DI Ok
i—1
— _"'E& -
VoL (w{ﬂ) N M = —~* (y—o(aw))
i L
1
GD: W =0 — =zl (ow) - y)

Inferenc:?



Logistic Regression:

C={C, La,...Cy}

"0
0
Ci= | -
1
0
-ﬂ-
Zpi—l, p; =0
P x i
.
E&JII
= b= Tz

w* = argmmE[ log(p(y | =, w))]

'8

ur

= arguuu Z Z JJ log pr?

i=1 j=1

VL = —%H’:I (y — o(xw))

Multiclass




Logistic Regression: Code Walk
through



Decision Tree

Match  Pitch Type Host Batting First  Winner
M1 spin-friendly India India India
M2 Pace-friendly  Australia Australia Australia
M3 Balanced India Australia India
M4 Spin-friendly  Australia India Australia
M5 Pace-Iriendly India Australia Australia
M6 spin-friendly India Australia India
M7 Balanced Australia India India
M8 Pace-friendly  Australia India Australia
M9 spin-friendly India India India
M10 Balanced Australia Australia Australia




Decision Tree

Plx=1)=P
Plx=0)=1-P

k
H(x) =) —P(x=i)log P(x = i)
z=]

= — / P(z)log P(x)dx
- .rmP{:.l:}[_ lﬂgP(I)]

H(Bernn(P)) = —Plog P — (1 — P)log(l1 — P)
OH —P
dP P
H=0

1—-P
lc:g( fz ))—ﬂ

—-1—-P=P
= P=1/2

—log P + log(1 — P)




