
CS217: Artificial Intelligence and

Machine Learning

(associated lab: CS240)

Nihar Ranjan Sahoo

PhD scholar under Prof. Pushpak Bhattacharyya
CSE Dept.,

IIT Bombay

Week10 of 17mar25, Linear, logistic regression, Decision

Trees

Main points covered: week9 of
10mar25

■ Dataset from the UCI Machine Learning Repository
■ https://archive.ics.uci.edu/ml/datasets.php

■ Number of instances = 748

■ Number of attributes = 4

■ Attributes / Features:
■ Recency - months since last donation

■ Frequency - total number of donation

■ Monetary - total blood donated in c.c.

■ Time - months since first donation

■ Class label:
■ A binary variable representing whether he/she donated blood in March 2007

■ 1 stands for donating blood; 0 stands for not donating blood

SVM using SKLEARN

https://archive.ics.uci.edu/ml/datasets.php

False Positives, False Negatives,
Precision, Recall, F-score

S1

S2

Generalized F-score

PR

RP

PR
F

)1(

1

)1(

1)1(

22

22

2

As β0, FβP and as β∞, FβR

Formal definition of HMM
(1/2)

■ N= #states

■ M= #distinct observation symbols

■ State transition probability distribution:
A={aij}

■ The observation symbol probability
distribution in state j, B=bj(k)

■ The initial state distribution, π={πi}

Formal definition of HMM
(2/2)

■ A={aij}
■ aij= P(qt+1=Sj | qt=Si), 1<= i,j <=N

■ B=bj(k)
■ bj(k)= P(Vk at t | qt= Sj), 1<= j <=N;

1<= k <= M

■ π={πi}
■ πi = P(q1=Si), 1<= i<=N

Classic problems with respect to
HMM

1.Given the observation sequence, find the

possible state sequences- Viterbi

2.Given the observation sequence, find its

probability- forward/backward algorithm

3.Given the observation sequence find the

HMM prameters.- Baum-Welch algorithm

End of Main points

General Machine Learning Tasks (1/2)

Linear, Logistic,
SVm, DT, NN, …

Knn, K-Means,
PCA, …

Self-training, Graph
based methods, …

Q-learning, DPO,
PPO, …

Others: Self-supervised learning, Active learning, Curriculum learning, Life-long
learning

General Machine Learning Tasks (2/2)

Supervised Unsupervised Semi-supervised

Reinforcement

Classification vs. Regression

Classification: a supervised learning task where the objective is to
predict discrete labels or categories to input data. The model learns to
map input features to one of a limited number of classes.

Examples: image recognition, text classification, etc.

Regression: a supervised learning task where the goal is to predict
continuous numeric values. The model learns the relationship between
input features and a continuous output.

Examples: stock market prediction, weather forecasting, etc.

Linear Regression: Intro

Assumes Linear relationship between
dependent (y) and independent (x)
variables.

Here, f is the model with parameter 𝜃
that captures the linear relation
between input x to output y.

where
1. Here, 𝜀 is the error (random noise)
caused due to experimental design.
2. b is the intercept.
3. m is the slope (indicating the
change in y for a one-unit change in x)
4. is ground truth
5. is predicted output

Assumes the dependent variable
(y) is continuous in nature.

Simple linear regression: y = b + w1x + ϵ
Multiple linear regression: y = b + w1x1 + w2x2 + · · · + wpxp + ϵ

Linear Regression: Setup and Error

Given a dataset of input-output pairs, {(xi , yi)}i=1
N .

We train a linear model f(x; w, b) => wTx + b, where w and b are model parameters.

Loss function: Sum Squared Error (SSE) => L(w, b) =

Goal: To find the model parameters that minimizes the loss

Compactly we car write:

Assumptions

1. Linearity: The relationship between predictors and response is linear

2. Independence: Observations are independent of each other

3. Homoscedasticity: Error variance is constant across all levels of predictors

4. Normality: Errors are normally distributed

5. No multicollinearity: Predictor variables are not highly correlated

Least Square via Calculus

We know, L(w, b) =

Compute partial derivatives with respect to b and w and set them to zero:

For b: For w:

Solving the above equations will give us:

This is the solution for simple linear regression.

Multivariate Least Square via Calculus (1/2)
Considering the loss function in compact form

Multivariate Least Square via Calculus (2/2)

This also called the Closed-form solution to Linear Regression or Ordinary Least
Square regression.

If this is the closed-form solution then
should be the global minimum. To prove this, we need to show that L(w)

is convex.

Convexity of Sum Square Error

Theorem: Hessian of a convex function is Positive Semi-definite.

Since the Hessian is always positive semi-definite, the loss function is convex.
So any critical point is a local and global minimum, so the critical point
minimizes the loss function.

Scenarios of OLS (based on Pseudoinverse)

The matrix (X⊤X)−1 X⊤ is known as the pseudoinverse of X, and is usually denoted as
X†.
Case 1:
- When # of data points (N) = # of input dimensions (p), can fit data perfectly.

- In other words, w = minw ∥y − Xw∥2
2, so finding the optimal w amounts to

solving the linear system of equations Xw = y.
- If X is full-rank, w = X−1y.

Case 2:
- When # of data points (N) > # of input dimensions (p), in general cannot fit data
perfectly. (In real world scenarios, this is more practical)

- As shown earlier, w = (X⊤X)−1 X⊤y = X†y. If we compare these formulas w = X−1y
vs. w = X†y, X† can be seen as a generalization of X−1 to the case where data cannot
be fit perfectly.

- X† can be interpreted as an operator that finds the best possible solution
to a linear system of equations that has no solution

Least Square via Linear Algebra

In real world scenarios, n >> p
=> no solution generally

y = Xw ⇒ (linear comb. of col of X)
col. sp (X) ⊆ Rn, dim(col(X)) ≤ p
x1

T e = 0, x2
T e = 0, · · · , xp

T e = 0 => X⊤e = 0
⇒ x⊤(y − Xw) = 0 ⇒ X⊤X w = X⊤ y
⇒ w = (X⊤X)−1 X⊤y (Same closed-form solution)

If Rank(X) = p.
⇒ Rank(X⊤X) = Rank(X) = p
⇒ Then Pseudo inverse can give solution

Least Square (Closed Form): Concerns

1. High computational cost

Computing (X⊤X)−1 requires matrix inversion, which generally has a
computational cost on the order of O(p^3), where p is the number of features.

1. Numerical instability

If the features are highly correlated (i.e., multicollinearity), X⊤X can be nearly
singular. This makes the inversion numerically unstable, leading to unreliable
coefficient estimates.

1. May require large memory

When dealing with large-scale data, storing the entire X matrix and computing
X⊤X can exceed available memory.

Least Square via Gradient Descent

This set of parameters minimizes the ”sum-squared-error” or ”mean-squared-
error”
Remember,

Least Square: Handling Outliers (1/3)

Least Square: Handling Outliers (2/3)

Least Square: Handling Outliers (3/3)

Least Square: Concerns

1. Linearity assumption

What about non-linear relation
between X and y?

- Kernel Trick

1. Sensitive to large outliers

It does not detect outliers, rather
try to reduce the effect of outliers
through regularization.

1. Less interpretable

Least Square: Code Walk through

Discriminative vs. Generative Model (1/2)

Generative Methods (G):
Generative models aim to capture how the data is generated by modeling the joint
probability distribution p(x,y). In doing so, they “explain” both the features and the
labels, which allows them not only to classify but also to generate new data samples.

A generative model is defined by: p(x,y|θ)=p(x∣y,θ) p(y|π)

- p(y) is the prior distribution over the labels.

- p(x∣y) is the likelihood, describing how the features x are generated given y.

- θ: the parameters of G

- π: the class prior

Discriminative vs. Generative Model (2/2)
Discriminative Methods (D):
Discriminative models focus directly on modeling the decision boundary between
classes. Instead of modeling the joint distribution, they learn the conditional
probability p(y∣x) or a direct mapping from x to y. This often leads to better
classification performance as the model is optimized solely for the prediction task.

- P(X,Y): the true joint distribution of inputs and outputs

- θ: the parameters of discriminative model

- D: directly model the conditional probability distribution P(Y|X; θ).

Formal representation of D

Y = {y1, y2, …, yk}

Di(X) = P(yi|X)

Di(X) > Dj(X), for all j != i => predict yi

Parameter Estimation Methods

These are different methods used to understand how models learn from data. In
other words, how to learn model parameters given the input data.

MLE - Maximum Likelihood Estimation

x = {x1, x2, …, xn} are i.i.ds from true distribution Px(x)
We want to learn a model with parameter θ such that the difference between Px(x)
and P(x|θ) is minimized.
P(x|θ) => likelihood of the model

MAP - Example 1

MAP - Maximum A Posteriori Estimate

MAP estimation incorporates prior knowledge about parameters through Bayes' rule:

P(θ∣X,Y) ∝ P(Y∣X,θ)⋅P(θ)

Linear : MLE :: Ridge : MAP

Logistic Regression: Intro

- Supervised algorithm for classification
- Based on “odds ratio”
- Odds = P / (1-P) => that is why sigmoid is used

Logistic Regression: MLE

Logistic Regression: Gradient Descent

Logistic Regression: Gradient Descent

Logistic Regression: Multiclass

Logistic Regression: Code Walk

through

Decision Tree

Decision Tree

