
CS217: Artificial Intelligence and

Machine Learning

(associated lab: CS240)

Pushpak Bhattacharyya
CSE Dept.,

IIT Bombay

Week3 of 20jan25, Monotone Restriction,

Perceptron

Main points covered: week2 of
13jan25

Key point about A* search

S

Statement:

Let S -n1-n2-n3…ni…-nk-1-
nk(=G) be an optimal path.

At any time during the
search:

1. There is a node ni from the
optimal path in the OL

2. For ni all its ancestors
S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

S
|
n1
|
n2
|
.
.
ni
.
.
nk-1
|
nk =g

Admissibility of A*

 1. A* algorithm halts

 2. A* algorithm finds optimal path

 3. If f(n) < f*(S) then node n has to be expanded
before termination

 4. If A* does not expand a node n before termination
then f(n) >= f*(S)

Better heuristic performs better

A version A2* of A* that has a “better” heuristic than another version

A1* of A* performs at least “as well as” A1*

Meaning of “better”

h2(n) > h1(n) for all n

Meaning of “as well as”

A
1
* expands at least all the nodes of A

2
*

h*(n)

h2(n)

h1(n) For all nodes n,

except the goal

node

Foundational Ideas

 Church Turing Hypothesis

 Physical Symbol System Hypothesis

 Uncomputabiliity

 NP-completeness and NP-hardness

 AI is multidisciplinary

 Difference between brain
computation and Turing Machine

End of main points

Monotonicity

Steps of GGS
(principles of AI, Nilsson,)

 1. Create a search graph G, consisting solely of the
start node S; put S on a list called OPEN.

 2. Create a list called CLOSED that is initially empty.

 3. Loop: if OPEN is empty, exit with failure.

 4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.

 5. if n is the goal node, exit with the solution
obtained by tracing a path along the pointers from n
to s in G. (ointers are established in step 7).

 6. Expand node n, generating the set M of its
successors that are not ancestors of n. Install these
memes of M as successors of n in G.

GGS steps (contd.)

 7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either
OPEN or CLOSED). Add these members of M to
OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. For each member of M already on
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

 8. Reorder the list OPEN using some strategy.

 9. Go LOOP.

Illustration for CL parent pointer
redirection recursively

S

1

2
3

54

6

Node in CL

Node in OL

Parent Pointer

Illustration for CL parent pointer
redirection recursively

S

1

2
3

54

6

Stage 1 :

Parent
Pointer
change from

2 - > 3 (Cost
= 4)

to
2 - > 1 (Cost
= 2)

Illustration for CL parent pointer
redirection recursively

S

1

2
3

54

6

Stage 2 :

Parent
Pointer
change from

4 - > 6 (Cost
= 4)

to
4 - > 2 (Cost
= 3)

Another graph
S

G

1

2

3

4

5

Each arc cost
1 unit

h=0 for all nodes,
Except 3, which is
3, i.e., h(3)=3

3 violates MR
h(3)=3
h(4)=0

Sequence of expansions:
S-1-2-4-…

Definition of monotonicity

 A heuristic h(p) is said to satisfy the
monotone restriction, if for all ‘p’,
h(p)<=h(pc)+cost(p, pc), where ‘pc’ is
the child of ‘p’.

Theorem

 If monotone restriction (also called triangular
inequality) is satisfied, then for nodes in the
closed list, redirection of parent pointer is not
necessary. In other words, if any node ‘n’ is
chosen for expansion from the open list, then
g(n)=g*(n), where g(n) is the cost of the
path from the start node ‘s’ to ‘n’ at that point
of the search when ‘n’ is chosen, and g*(n) is
the cost of the optimal path from ‘s’ to ‘n’

Grounding the Monotone Restriction
7 3

1 2 4

8 5 6

1 2 3

4 5 6

7 8

n
G

7 3 4

1 2

8 5 6

h(n) -: number of displaced tiles

Is h(n) monotone ?
h(n) = 8
h(n’) = 8
C(n,n’) = 1

Hence monotone

n’

Monotonicity of # of Displaced
Tile Heuristic

 h(n) < = h(n’) + c(n, n’)

 Any move changes h(n) by at most 1

 c = 1

 Hence, h(parent) < = h(child) + 1

 If the empty cell is also included in the
cost, then h need not be monotone
(try!)

Monotonicity of Manhattan
Distance Heuristic (1/2)

 Manhattan distance= X-dist+Y-dist from
the target position

 Refer to the diagram in the first slide:
 hmn(n) = 1 + 1 + 1 + 2 + 1 + 1 + 2 + 1 =

10
 hmn(n’) = 1 + 1 + 1 + 3 + 1 + 1 + 2 + 1

= 11
 Cost = 1
 Again, h(n) < = h(n’) + c(n, n’)

Monotonicity of Manhattan
Distance Heuristic (2/2)

 Any move can either increase the h value
or decrease it by at most 1.

 Cost again is 1.
 Hence, this heuristic also satisfies

Monotone Restriction
 If empty cell is also included in the cost

then manhattan distance does not satisfy
monotone restriction (try!)

 Apply this heuristic for Missionaries and
Cannibals problem

Relationship between
Monotonicity and Admissibility

 Observation:

Monotone Restriction → Admissibility
but not vice-versa

 Statement: If h(ni) <= h(nj) + c(ni, nj)
for all i, j

then h(ni) < = h*(ni) for all i

Proof of
Monotonicityadmissibility

Let us consider the following as the optimal path starting with a
node n = n1 – n2 – n3 … ni - … nm = gl

Observe that
h*(n) = c(n1, n2) + c(n2,n3) + … + c(nm-1, gl)

Since the path given above is the optimal path from n to gl

Now,
h(n1) <= h(n2) + c(n1, n2) ------ Eq 1
h(n2) <= h(n3) + c(n2, n3) ------ Eq 2
: : : : : :
h(nm-1) = h(gi) + c(nm-1, gi)------ Eq (m-1)

Adding Eq 1 to Eq (m-1) we get
h(n) <= h(gl) + h*(n) = h*(n)

Hence proved that MR → (h <= h*)

Proof (continued…)
Counter example for vice-versa

h*(n1) = 3 h(n1) = 2.5

h*(n2) = 2 h(n2) = 1.2

h*(n3) = 1 h(n3) = 0.5

: : : :

h*(gl) = 0 h(gl) = 0

h < h* everywhere but MR is not
satisfied

n1

n2

n3

gl

:

Let S-N1- N2- N3- N4... Nm …Nk be an optimal path from S to Nk (all of
which might or might not have been explored). Let Nm be the last
node on this path which is on the open list, i.e., all the ancestors from S
up to Nm-1 are in the closed list.

For every node Np on the optimal path,

g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), by monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal path
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Since all ancestors of Nm in the optimal path are in the closed list,

g (Nm)= g*(Nm).
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk)

Proof of MR leading to optimal path
for every expanded node (1/2)

Now if Nk is chosen in preference to Nm,
f(Nk) <= f(Nm)

g(Nk)+ h(Nk) <= g(Nm)+ h(Nm)
= g*(Nm)+ h(Nm)

<= g*((Nk)+ h(Nk)
g(Nk)<=g*(Nk)

But g(Nk)>=g*(Nk), by definition

Hence g(Nk)=g*(Nk)

This means that if Nk is chosen for expansion, the optimal path to this
from S has already been found.

The key point here is that if MR is satisfied, nodes in an optimal
path have to get expanded in the order of their distance from
the start node.

TRY proving by induction on the length of optimal path

Proof of MR leading to optimal path
for every expanded node (2/2)

Monotonicity of f(.) values

Statement:

f values of nodes expanded by A*
increase monotonically, if h is
monotone.

Proof:

Suppose ni and nj are expanded with
temporal sequentiality, i.e., nj is
expanded after ni

Proof (1/3)…

ni expanded before nj

ni and nj co-existing nj comes to open list as a
result of expanding ni and is
expanded immediately

nj’s parent pointer
changes to ni and
expanded

nj expanded
after ni

Proof (2/3)…

 All the previous cases are forms of the
following two cases (think!)

 CASE 1:

nj was on open list when ni was expanded

Hence, f(ni) <= f(nj) by property of A*

 CASE 2:

nj comes to open list due to expansion
of ni

Proof (3/3)…

ni

nj

Case 2:
f(ni) = g(ni) + h(ni) (Defn of f)
f(nj) = g(nj) + h(nj) (Defn of f)

f(ni) = g(ni) + h(ni) = g*(ni) + h(ni) ---Eq 1

(since ni is picked for expansion ni is on optimal path)

With the similar argument for nj we can write the following:
f(nj) = g(nj) + h(nj) = g*(nj) + h(nj) ---Eq 2

Also,
h(ni) < = h(nj) + c(ni, nj) ---Eq 3 (Parent- child

relation)
g*(nj) = g*(ni) + c(ni, nj) ---Eq 4 (both nodes on

optimal path)
From Eq 1, 2, 3 and 4

f(ni) <= f(nj)
Hence proved.

Better way to understand
monotonicity of f()

 Let f(n1), f(n2), f(n3), f(n4)… f(nk-1), f(nk) be the f
values of k expanded nodes.

 The relationship between two consecutive expansions
f(ni) and f(ni+1) nodes always remains the same, i.e.,
f(ni) <= f(ni+1)

 This is because

 f(ni)= g(ni) +h(ni) and

 g(ni)=g*(ni) since ni is an expanded node (proved theorem)
and this value cannot change

 h(ni) value also cannot change Hence nothing after ni+1’s
expansion can change the above relationship.

Monotonicity of f()

f(n1), f(n2), f(n3), …… ,f(ni), f(ni+1), … ,f(nk)
Sequence of expansion of n1, n2, n3 … ni … nk

f values increase monotonically
f(n) = g(n) + h(n)

Consider two successive expansions - > ni, ni+1

Case 1:
ni & ni+1 Co-existing in OL

ni precedes ni+1

By definition of A*
f(ni) <= f(ni+1)

Monotonicity of f()

Case 2:
ni+1 came to OL because of expanding ni and ni+1

is expanded

f(ni) = g(ni) + h(ni)
<= g(ni) + c(ni, hi+1)+ h(ni+1)
= g(ni) + h(ni+1)
= f(ni+1)

Case 3:
ni+1 becomes child of ni after expanding ni and

ni+1 is expanded. Same as case 2.

A list of AI Search Algorithms

 A*
 AO*
 IDA* (Iterative Deepening)

 Minimax Search on Game Trees
 Viterbi Search on Probabilistic FSA
 Hill Climbing
 Simulated Annealing
 Gradient Descent
 Stack Based Search
 Genetic Algorithms
 Memetic Algorithms

Foundational Points

Symbolic AI

Connectionist AI is contrasted with Symbolic
AI
Symbolic AI - Physical Symbol System
Hypothesis

Every intelligent system can be
constructed by storing and processing
symbols and nothing more is necessary.

Symbolic AI has a bearing on models of
computation such as

Turing Machine
Von Neumann Machine
Lambda calculus

Turing Machine & Von Neumann Machine

Challenges to Symbolic AI

Motivation for challenging Symbolic AI
A large number of computations and

information process tasks that living beings are
comfortable with, are not performed well by
computers!

The Differences

Brain computation in living beings TM computation in
computers
Pattern Recognition Numerical Processing
Learning oriented Programming oriented
Distributed & parallel processing Centralized & serial

processing

Content addressable Location addressable

The human brain

Seat of consciousness and cognition

Perhaps the most complex information processing
machine in nature

Beginner’s Brain Map

Forebrain (Cerebral Cortex):

Language, maths, sensation,

movement, cognition, emotion

Cerebellum: Motor

Control

Midbrain: Information Routing;

involuntary controls

Hindbrain: Control of

breathing, heartbeat, blood

circulation
Spinal cord: Reflexes,

information highways between

body & brain

Brain : a computational machine?
Information processing: brains vs computers

 brains better at perception / cognition

 slower at numerical calculations

 parallel and distributed Processing

 associative memory

Brain : a computational machine? (contd.)

 Evolutionarily, brain has developed algorithms
most suitable for survival

 Algorithms unknown: the search is on

 Brain astonishing in the amount of information it
processes

 Typical computers: 109 operations/sec

 Housefly brain: 1011 operations/sec

Brain facts & figures

• Basic building block of nervous system: nerve
cell (neuron)

• ~ 1012 neurons in brain

• ~ 1015 connections between them

• Connections made at “synapses”

• The speed: events on millisecond scale in
neurons, nanosecond scale in silicon chips

Neuron - “classical”
• Dendrites

– Receiving stations of neurons

– Don't generate action potentials

• Cell body
– Site at which information

received is integrated

• Axon
– Generate and relay action

potential

– Terminal

• Relays information to

next neuron in the pathway http://www.educarer.com/images/brain-nerve-axon.jpg

Computation in Biological

Neuron

 Incoming signals from synapses are summed up
at the soma

 , the biological “inner product”

 On crossing a threshold, the cell “fires”
generating an action potential in the axon
hillock region



Synaptic inputs:
Artist’s conception

The biological neuron

Pyramidal neuron, from
the amygdala (Rupshi
et al. 2005)

A CA1 pyramidal neuron (Mel et
al. 2004)

Perceptron

The Perceptron Model

A perceptron is a computing element with
input lines having associated weights and the
cell having a threshold value. The perceptron
model is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

θ

1
y

Step function / Threshold function
y = 1 for Σwixi >=θ

=0 otherwise

Σwixi

Features of Perceptron

• Input output behavior is discontinuous and the
derivative does not exist at Σwixi = θ

• Σwixi - θ is the net input denoted as net

• Referred to as a linear threshold element - linearity
because of x appearing with power 1

• y= f(net): Relation between y and net is non-
linear

Computation of Boolean functions

AND of 2 inputs
X1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1
The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ

Computing parameter values

w1 * 0 + w2 * 0 <= θ  θ >= 0; since y=0

w1 * 0 + w2 * 1 <= θ  w2 <= θ; since y=0

w1 * 1 + w2 * 0 <= θ  w1 <= θ; since y=0

w1 * 1 + w2 *1 > θ  w1 + w2 > θ; since y=1

w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be used for
computing AND function.

Other Boolean functions

• OR can be computed using values of w1 = w2 =
1 and = 0.5

• XOR function gives rise to the following
inequalities:

w1 * 0 + w2 * 0 <= θ  θ >= 0

w1 * 0 + w2 * 1 > θ  w2 > θ

w1 * 1 + w2 * 0 > θ  w1 > θ

w1 * 1 + w2 *1 <= θ  w1 + w2 <= θ

No set of parameter values satisfy these inequalities.

Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions

(2n2)

1 4 4
2 16 14
3 256 128
4 64K 1008

• Functions computable by perceptrons -
threshold functions

• #TF becomes negligibly small for larger values
of #BF.

• For n=2, all functions except XOR and XNOR
are computable.

Perceptrons and their computing power

Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions

(2n2)

1 4 4
2 16 14
3 256 128
4 64K 1008

• Functions computable by perceptrons -
threshold functions

• #TF becomes negligibly small for larger values
of #BF.

• For n=2, all functions except XOR and XNOR
are computable.

Link

Concept of Hyper-planes

 ∑ wixi = θ defines a linear surface in the
(W,θ) space, where W=<w1,w2,w3,…,wn>
is an n-dimensional vector.

 A point in this (W,θ) space

defines a perceptron.

y

x1

. . .

θ

w1 w2 w3 wn

x2 x3 xn

Perceptron Property

 Two perceptrons may have different
parameters but same function

 Example of the simplest perceptron

w.x>ɵ gives y=1

w.x≤ɵ gives y=0

Depending on different values of

w and θ, four different functions are
possible

θ

y

x1

w1

Simple perceptron contd.

10101

11000

F4F3F2F1x

0<=θ

=>θ≥0

w≤ɵ

θ≥0

w> ɵ

θ<0

w≤ ɵ

θ<0

w>ɵ

0-function Identity Function Complement Function

0> ɵ; =>

True-Function

Counting the number of functions
for the simplest perceptron

 For the simplest perceptron, the equation
is w.x=θ.

Substituting x=0 and x=1,

we get θ=0 and w=θ.

These two lines intersect to

form four regions, which

correspond to the four functions.

w

w=θ

F1

F3
F4

F2

ɵ

Fundamental Observation

 The number of TFs computable by a perceptron
is equal to the number of regions produced by
2n hyper-planes,obtained by plugging in the
values <x1,x2,x3,…,xn> in the equation

∑i=1
nwixi= θ

AND of 2 inputs

X1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1
The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ

Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <= θ  θ >= 0; since y=0

w1 * 0 + w2 * 1 <= θ  w2 <= θ; since y=0

w1 * 1 + w2 * 0 <= θ  w1 <= θ; since y=0

w1 * 1 + w2 *1 > θ  w1 + w2 > θ; since y=1

w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

The geometrical observation

 Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim)
in d-dim, then what is the max. no. of
regions produced by their intersection?

i.e., Rm,d = ?

Co-ordinate Spaces

We work in the <X1, X2> space or the <w1,
w2, Ѳ> space

W2

W1

Ѳ

X1

X2

(0,0)

(1,0)

(0,1)

(1,1)

Hyper-plane
(Line in 2-D)

W1 = W2 = 1, Ѳ =
0.5
X1 + x2 = 0.5

General equation of a Hyperplane:
Σ Wi Xi = Ѳ

Regions produced by lines

X1

X2
L1

L2
L3

L4

Regions produced by lines
not necessarily passing
through origin
L1: 2

L2: 2+2 = 4

L3: 2+2+3 = 7

L4: 2+2+3+4 =
11

New regions created = Number of intersections on the incoming line
by the original lines
Total number of regions = Original number of regions + New regions
created

Number of computable
functions by a neuron

4:21)1,1(

3:1)0,1(

2:2)1,0(

1:0)0,0(

2*21*1

Pww

Pw

Pw

P

xwxw





















P1, P2, P3 and P4 are planes in the
<W1,W2, Ѳ> space

w1 w2

Ѳ

x1 x2

Y

Number of computable functions by a neuron
(cont…)

 P1 produces 2 regions
 P2 is intersected by P1 in a line. 2 more new

regions are produced.
Number of regions = 2+2 = 4

 P3 is intersected by P1 and P2 in 2 intersecting
lines. 4 more regions are produced.
Number of regions = 4 + 4 = 8

 P4 is intersected by P1, P2 and P3 in 3
intersecting lines. 6 more regions are produced.
Number of regions = 8 + 6 = 14

 Thus, a single neuron can compute 14 Boolean
functions which are linearly separable.

P2

P3

P4

Points in the same region

X1

X2If
W1*X1 + W2*X2 > Ѳ
W1’*X1 + W2’*X2 > Ѳ’
Then

If <W1,W2, Ѳ> and
<W1’,W2’, Ѳ’> share a
region then they
compute the same
function

No. of Regions produced by
Hyperplanes

Number of regions founded by n hyperplanes in d-dim passing

through origin is given by the following recurrence relation

we use generating function as an operating function

Boundary condition:

1 hyperplane in d-dim

n hyperplanes in 1-dim,

Reduce to n points thru origin

The generating function is

1,1,, 1   dnddn RRR n

2

2

1,

,1





n

d

R

R

d

n d

n
dn yxRyxf 










1 1

,),(

From the recurrence relation we have,

Rn-1,d corresponds to ‘shifting’ n by 1 place, => multiplication by x

Rn-1,d-1 corresponds to ‘shifting’ n and d by 1 place => multiplication by xy

On expanding f(x,y) we get

01,1,, 1   dnddn RRR n













........

.....

........

........),(

,
3

3,
2

2,1,

2
,2

32
3,2

22
2,2

2
1,2

,13,12,11,1
32

dn
dn

n
n

n
n

n
n

d
d

d

yxRyxRyxRyxR

yxRyxRyxRyxR

yxRyxRyxRxyRyxf
d








































































































22 2

,1

2

1,1

2 2

,1

2 2

1,1
1

1 1

1
,

2 1

,1

1 1

1
,

1 1

,

2

),(

),(

),(

),(

n

n

n d

dn
dn

n

n
n

n d

dn
dn

d

n d

n
dn

d

n d

n
dn

d

n d

n
dn

n d

dn
dn

d

n d

n
dn

yxyxR

yxRyxRyxfx

yxRyxRyxfxy

yxRyxRyxfx

yxRyxf

After all this expansion,

since other two terms become zero

xyyxyxyxyxR

xyRyxRxyRyxR

yxRyxf

n

n

d

dd

n d

n
dn

n

n
n

d

d
d

d

n d

n
dn

d

n d

n
dn

222

),(

112 2

,

1,1

1

1,

1

,1

2 2

,

1 1

,







































































































1

121

2 2

1,1,1,

2

2222

)(

d

d

d

d

nn

d

d

n d

n
dndndn

yx

yxxyxyxy

yxRRR

),(),(),(yxfxyyxfxyxf 

This implies

also we have,

Comparing coefficients of each term in RHS we get,

].....)1(...)1()1(1[

]........[2

2
)]1(1[

1
),(

2),(]1[

22

32

1

1























dd

d

d

d

d

d

yxyxyx

yyyyx

yx
yx

yxf

yxyxfxyx

d

n d

n
dn yxRyxf 










1 1

,),(









1

0

1
2

d

i

n

iC

Comparing co-efficients we get

dnR ,

Perceptron training

Perceptron Training Algorithm
(PTA)

Preprocessing:

1. The computation law is modified to

y = 1 if ∑wixi > θ

y = o if ∑wixi < θ



. . .

θ, ≤

w1 w2 wn

x1 x2 x3 xn

. . .

θ, <

w1 w2 w3 wn

x1 x2 x3 xn

w3

PTA – preprocessing cont…

2. Absorb θ as a weight



3. Negate all the zero-class examples

. . .

0

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

. . .

θ

w1 w2 w
3

wn

x2 x3 xn
x1

Example to demonstrate
preprocessing

 OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate
preprocessing cont..

Now the vectors are

x0 x1 x2

X1 -1 0 1

X2 -1 1 0

X3 -1 1 1

X4 1 0 0

Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail

PTA on NAND
NAND: Y

X2 X1 Y

0 0 1

0 1 1 W2 W1

1 0 1

1 1 0 X2 X1

Converted To

W2 W1 W0= Θ

X2 X1 X0=-1

Θ

Preprocessing

NAND Augmented: NAND-0 class Negated

X2 X1 X0 Y X2 X1 X0

0 0 -1 1 V0: 0 0 -1

0 1 -1 1 V1: 0 1 -1

1 0 -1 1 V2: 1 0 -1

1 1 -1 0 V3: -1 -1 1

Vectors for which
W=<W2 W1 W0> has to
be found such that
W. Vi > 0

PTA Algo steps
Algorithm:
1. Initialize and Keep adding the failed vectors

until W. Vi > 0 is true.

Step 0: W = <0, 0, 0>
W1 = <0, 0, 0> + <0, 0, -1> {V0 Fails}

= <0, 0, -1>
W2 = <0, 0, -1> + <-1, -1, 1> {V3 Fails}

= <-1, -1, 0>
W3 = <-1, -1, 0> + <0, 0, -1> {V0 Fails}

= <-1, -1, -1>
W4 = <-1, -1, -1> + <0, 1, -1> {V1 Fails}

= <-1, 0, -2>

Trying convergence
W5 = <-1, 0, -2> + <-1, -1, 1> {V3 Fails}

= <-2, -1, -1>

W6 = <-2, -1, -1> + <0, 1, -1> {V1 Fails}

= <-2, 0, -2>

W7 = <-2, 0, -2> + <1, 0, -1> {V0 Fails}

= <-1, 0, -3>

W8 = <-1, 0, -3> + <-1, -1, 1> {V3 Fails}

= <-2, -1, -2>

W9 = <-2, -1, -2> + <1, 0, -1> {V2 Fails}

= <-1, -1, -3>

Trying convergence
W10 = <-1, -1, -3> + <-1, -1, 1> {V3 Fails}

= <-2, -2, -2>
W11 = <-2, -2, -2> + <0, 1, -1> {V1 Fails}

= <-2, -1, -3>
W12 = <-2, -1, -3> + <-1, -1, 1> {V3 Fails}

= <-3, -2, -2>
W13 = <-3, -2, -2> + <0, 1, -1> {V1 Fails}

= <-3, -1, -3>
W14 = <-3, -1, -3> + <0, 1, -1> {V2 Fails}

= <-2, -1, -4>

W15 = <-2, -1, -4> + <-1, -1, 1> {V3 Fails}
= <-3, -2, -3>

W16 = <-3, -2, -3> + <1, 0, -1> {V2 Fails}
= <-2, -2, -4>

W17 = <-2, -2, -4> + <-1, -1, 1> {V3 Fails}
= <-3, -3, -3>

W18 = <-3, -3, -3> + <0, 1, -1> {V1 Fails}
= <-3, -2, -4>

W2 = -3, W1 = -2, W0 = Θ = -4

Succeeds for all vectors

PTA convergence

Statement of Convergence of
PTA

 Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

Proof of Convergence of PTA

 Suppose wn is the weight vector at the nth

step of the algorithm.

 At the beginning, the weight vector is w0

 Go from wi to wi+1 when a vector Xj fails
the test wiXj > 0 and update wi as

wi+1 = wi + Xj

 Since Xjs form a linearly separable
function,

 w* s.t. w*Xj > 0 j

Proof of Convergence of PTA
(cntd.)

 Consider the expression
G(wn) = wn . w*

| wn|

where wn = weight at nth iteration

 G(wn) = |wn| . |w*| . cos 
|wn|

where  = angle between wn and w*

 G(wn) = |w*| . cos 

 G(wn) ≤ |w*| (as -1 ≤ cos  ≤ 1)

Behavior of Numerator of G

wn . w* = (wn-1 + Xn-1
fail) . w*

 wn-1 . w* + Xn-1
fail . w*

 (wn-2 + Xn-2
fail) . w* + Xn-1

fail . w* …..

 w0 . w* + (X0
fail + X1

fail +.... + Xn-1
fail). w*

w*.Xi
fail is always positive: note

carefully

 Suppose |Xj| ≥  , where  is the
minimum magnitude.

 Num of G ≥ |w0 . w*| + n  . |w*|

 So, numerator of G grows with n.

Behavior of Denominator of G

 |wn| =  (wn . wn) {the sq root extends over the whole

expression}

  (wn-1 + Xn-1
fail)

2

  (wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail)
2

≤  (wn-1)
2 + (Xn-1

fail)
2 (as wn-1. X

n-1
fail

≤ 0)

≤  (w0)
2 + (X0

fail)
2 + (X1

fail)
2 +…. + (Xn-1

fail

)2

 |Xj| ≤  (max magnitude)

 So, Denom ≤  (w0)
2 + n2

Some Observations

 Numerator of G grows as n

 Denominator of G grows as  n

=> Numerator grows faster than
denominator

 If PTA does not terminate, G(wn) values
will become unbounded.

Some Observations contd.

 But, as |G(wn)| ≤ |w*| which is finite,
this is impossible!

 Hence, PTA has to converge.

 Proof is due to Marvin Minsky.

