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Key point about A* search

S

Statement:  

Let S -n1-n2-n3…ni…-nk-1-
nk(=G) be an optimal path.

At any time during the 
search:

1. There is a node ni from the 
optimal path in the OL

2. For ni all its ancestors 
S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

S
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Admissibility of A*

 1. A* algorithm halts

 2. A* algorithm finds optimal path

 3. If f(n) < f*(S) then node n has to be expanded 
before termination

 4. If A* does not expand a node n before termination 
then f(n) >= f*(S) 



Better heuristic performs better

A version A2* of A* that has a “better” heuristic than another version 

A1* of A* performs at least “as well as” A1*

Meaning of “better”

h2(n) > h1(n) for all n

Meaning of “as well as”

A
1
* expands at least all the nodes of A

2
*

h*(n)

h2(n)

h1(n) For all nodes n, 

except the goal 

node



Foundational Ideas

 Church Turing Hypothesis

 Physical Symbol System Hypothesis

 Uncomputabiliity

 NP-completeness and NP-hardness

 AI is multidisciplinary

 Difference between brain 
computation and Turing Machine



End of main points



Monotonicity



Steps of GGS 
(principles of AI, Nilsson,)

 1. Create a search graph G, consisting solely of the 
start node S; put S on a list called OPEN.

 2. Create a list called CLOSED that is initially empty.

 3. Loop: if OPEN is empty, exit with failure.

 4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.

 5. if n is the goal node, exit with the solution 
obtained by tracing a path along the pointers from n 
to s in G. (ointers are established in step 7).

 6. Expand node n, generating the set M of its 
successors that are not ancestors of n. Install these 
memes of M as successors of n in G.



GGS steps (contd.)

 7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either 
OPEN or CLOSED). Add these members of M to 
OPEN. For each member of M that was already on 
OPEN or CLOSED, decide whether or not to redirect 
its pointer to n. For each member of M already on 
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

 8. Reorder the list OPEN using some strategy.

 9. Go LOOP.



Illustration for CL parent pointer 
redirection recursively

S

1

2
3

54

6

Node in CL

Node in OL

Parent Pointer



Illustration for CL parent pointer 
redirection recursively

S

1

2
3

54
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Stage 1 :

Parent 
Pointer 
change from 

2 - > 3  (Cost 
= 4)

to   
2 - > 1 (Cost 
= 2)



Illustration for CL parent pointer 
redirection recursively

S

1

2
3

54
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Stage 2 :

Parent 
Pointer 
change from 

4 - > 6  (Cost 
= 4)

to   
4 - > 2 (Cost 
= 3)



Another graph
S

G

1

2

3

4

5

Each arc cost
1 unit

h=0 for all nodes,
Except 3, which is 
3, i.e., h(3)=3

3 violates MR
h(3)=3
h(4)=0

Sequence of expansions:
S-1-2-4-…



Definition of monotonicity

 A heuristic h(p) is said to satisfy the 
monotone restriction, if for all ‘p’, 
h(p)<=h(pc)+cost(p, pc), where ‘pc’ is 
the child of ‘p’.



Theorem

 If monotone restriction (also called triangular 
inequality) is satisfied, then for nodes in the 
closed list, redirection of parent pointer is not 
necessary. In other words, if any node ‘n’ is 
chosen for expansion from the open list, then 
g(n)=g*(n), where g(n) is the cost of the 
path from the start node ‘s’ to ‘n’ at that point 
of the search when ‘n’ is chosen, and g*(n) is 
the cost of the optimal path from ‘s’ to ‘n’



Grounding the Monotone Restriction
7 3

1 2 4

8 5 6

1 2 3

4 5 6

7 8

n
G

7 3 4

1 2

8 5 6

h(n) -: number of displaced tiles

Is h(n) monotone ?
h(n)  = 8
h(n’) = 8
C(n,n’) = 1

Hence monotone

n’



Monotonicity of # of Displaced 
Tile Heuristic

 h(n) < = h(n’) + c(n, n’)

 Any move changes h(n) by at most 1 

 c = 1

 Hence, h(parent) < = h(child) + 1

 If the empty cell is also included in the 
cost, then h need not be monotone 
(try!) 



Monotonicity of Manhattan 
Distance Heuristic (1/2)

 Manhattan distance= X-dist+Y-dist from 
the target position

 Refer to the diagram in the first slide:
 hmn(n) = 1 + 1 + 1 + 2 + 1 + 1 + 2 + 1 = 

10
 hmn(n’) = 1 + 1 + 1 + 3 + 1 + 1 + 2 + 1 

= 11
 Cost = 1
 Again, h(n) < = h(n’) + c(n, n’)



Monotonicity of Manhattan 
Distance Heuristic (2/2)

 Any move can either increase the h value 
or decrease it by at most 1.

 Cost again is 1.
 Hence, this heuristic also satisfies 

Monotone Restriction
 If empty cell is also included in the cost 

then manhattan distance does not satisfy 
monotone restriction (try!)

 Apply this heuristic for Missionaries and 
Cannibals problem



Relationship between 
Monotonicity and Admissibility

 Observation: 

Monotone Restriction → Admissibility 
but not vice-versa

 Statement: If h(ni) <= h(nj) + c(ni, nj) 
for all i, j

then h(ni) < = h*(ni)  for all i



Proof of 
Monotonicityadmissibility

Let us consider the following as the optimal path starting with a 
node n = n1 – n2 – n3 … ni - … nm = gl

Observe that 
h*(n) = c(n1, n2) + c(n2,n3) + … + c(nm-1, gl)

Since the path given above is the optimal path from n to gl

Now,
h(n1) <= h(n2) + c(n1, n2) ------ Eq 1
h(n2) <= h(n3) + c(n2, n3) ------ Eq 2
: : : : : :
h(nm-1) = h(gi) + c(nm-1, gi)------ Eq (m-1)

Adding Eq 1 to Eq (m-1) we get
h(n) <= h(gl) + h*(n) = h*(n)

Hence proved that MR → (h <= h*)



Proof (continued…)
Counter example for vice-versa

h*(n1) = 3 h(n1) = 2.5

h*(n2) = 2 h(n2) = 1.2

h*(n3) = 1 h(n3) = 0.5

: : : :

h*(gl) = 0 h(gl) = 0

h < h* everywhere but MR is not 
satisfied

n1

n2

n3

gl

:



Let S-N1- N2- N3- N4... Nm …Nk be an optimal path from S to Nk (all of 
which might or might not have been explored). Let Nm be the last
node on this path which is on the open list, i.e., all the ancestors from S 
up to Nm-1 are in the closed list.

For every node Np on the optimal path, 

g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), by monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal path
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Since all ancestors of Nm  in the optimal path are in the closed list, 

g (Nm)= g*(Nm). 
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) 

Proof of MR leading to optimal path 
for every expanded node (1/2)



Now if Nk is chosen in preference to Nm,
f(Nk) <= f(Nm)

g(Nk)+ h(Nk) <= g(Nm)+ h(Nm)
= g*(Nm)+ h(Nm)

<= g*((Nk)+ h(Nk)
g(Nk)<=g*(Nk)

But      g(Nk)>=g*(Nk), by definition

Hence g(Nk)=g*(Nk)

This means that if Nk is chosen for expansion, the optimal path to this 
from S has already been found.

The key point here is that if MR is satisfied, nodes in an optimal 
path have to get expanded in the order of their distance from 
the start node. 

TRY proving by induction on the length of optimal path

Proof of MR leading to optimal path 
for every expanded node (2/2)



Monotonicity of f(.) values

Statement:

f values of nodes expanded by A* 
increase monotonically, if h is 
monotone. 

Proof:

Suppose ni and nj are expanded with 
temporal sequentiality, i.e., nj is 
expanded after ni



Proof (1/3)…

ni expanded before nj

ni and nj co-existing nj comes to open list as a 
result of expanding ni and is 
expanded immediately

nj’s parent pointer 
changes to ni and 
expanded

nj expanded 
after ni



Proof (2/3)…

 All the previous cases are forms of the 
following two cases (think!)

 CASE 1:

nj was on open list when ni was expanded

Hence, f(ni) <= f(nj)  by property of A*

 CASE 2:

nj comes to open list due to expansion 
of ni



Proof (3/3)…

ni

nj

Case 2: 
f(ni) = g(ni) + h(ni) (Defn of f)
f(nj) = g(nj) + h(nj) (Defn of f)

f(ni) = g(ni) + h(ni) = g*(ni) + h(ni)   ---Eq 1  

(since ni is picked for expansion ni is on optimal path) 

With the similar argument for nj we can write the following:
f(nj) = g(nj) + h(nj) = g*(nj) + h(nj)   ---Eq 2

Also,
h(ni) < = h(nj) + c(ni, nj)    ---Eq 3 (Parent- child 

relation)
g*(nj) = g*(ni) + c(ni, nj)   ---Eq 4 (both nodes on 

optimal path)
From Eq 1, 2, 3 and 4 

f(ni) <= f(nj)
Hence proved.



Better way to understand 
monotonicity of f()

 Let f(n1), f(n2), f(n3), f(n4)… f(nk-1), f(nk) be the f
values of k expanded nodes.

 The relationship between two consecutive expansions 
f(ni) and f(ni+1) nodes always remains the same, i.e., 
f(ni) <= f(ni+1) 

 This is because 

 f(ni)= g(ni) +h(ni) and

 g(ni)=g*(ni) since ni is an expanded node (proved theorem) 
and this value cannot change

 h(ni) value also cannot change Hence nothing after ni+1’s 
expansion can change the above relationship. 



Monotonicity of f()

f(n1), f(n2), f(n3), …… ,f(ni), f(ni+1), … ,f(nk)  
Sequence of expansion of n1, n2, n3 … ni … nk

f values increase monotonically
f(n) = g(n) + h(n) 

Consider two successive expansions  - > ni,  ni+1

Case 1:
ni & ni+1  Co-existing in OL  

ni precedes ni+1

By definition of A*
f(ni) <= f(ni+1)



Monotonicity of f()

Case 2:
ni+1   came to OL because of expanding ni and ni+1  

is expanded 

f(ni) = g(ni) + h(ni) 
<= g(ni) + c(ni, hi+1)+ h(ni+1)
=  g(ni) + h(ni+1) 
= f(ni+1) 

Case 3:
ni+1   becomes child of ni after expanding ni and 

ni+1  is expanded. Same as case 2.



A list of AI Search Algorithms

 A*
 AO*
 IDA* (Iterative Deepening)

 Minimax Search on Game Trees
 Viterbi Search on Probabilistic FSA
 Hill Climbing
 Simulated Annealing
 Gradient Descent
 Stack Based Search
 Genetic Algorithms
 Memetic Algorithms



Foundational Points



Symbolic AI

Connectionist AI is contrasted with Symbolic 
AI
Symbolic AI - Physical Symbol System 
Hypothesis

Every intelligent system can be 
constructed by storing and processing 
symbols and nothing more is necessary.

Symbolic AI has a bearing on models of 
computation such as

Turing Machine
Von Neumann Machine
Lambda calculus



Turing Machine & Von Neumann Machine



Challenges to Symbolic AI

Motivation for challenging Symbolic AI
A large number of computations and 

information process tasks that living beings are 
comfortable with, are not performed well by 
computers!

The Differences

Brain computation in living beings TM computation in 
computers
Pattern Recognition Numerical Processing
Learning oriented Programming oriented
Distributed & parallel processing Centralized & serial 

processing

Content addressable Location addressable



The human brain

Seat of consciousness and cognition

Perhaps the most complex information processing  
machine in nature



Beginner’s Brain Map

Forebrain (Cerebral Cortex):

Language, maths, sensation, 

movement, cognition, emotion

Cerebellum: Motor 

Control

Midbrain: Information  Routing; 

involuntary controls

Hindbrain: Control of 

breathing, heartbeat, blood 

circulation
Spinal cord: Reflexes, 

information highways between 

body & brain



Brain : a computational machine?
Information processing: brains vs computers

 brains better at perception / cognition

 slower at numerical calculations

 parallel and distributed Processing

 associative memory



Brain : a computational machine? (contd.)

 Evolutionarily, brain has developed algorithms 
most suitable for survival

 Algorithms unknown: the search is on

 Brain astonishing in the amount of information it 
processes

 Typical computers: 109 operations/sec

 Housefly brain: 1011 operations/sec



Brain facts & figures

• Basic building block of nervous system: nerve 
cell (neuron)

• ~ 1012 neurons in brain

• ~ 1015 connections between them

• Connections made at “synapses”

• The speed: events on millisecond scale in 
neurons, nanosecond scale in silicon chips















Neuron - “classical”
• Dendrites

– Receiving stations of neurons

– Don't generate action potentials

• Cell body
– Site at which information 

received is integrated

• Axon
– Generate and relay action 

potential

– Terminal

• Relays information to 

next neuron in the pathway http://www.educarer.com/images/brain-nerve-axon.jpg



Computation in Biological 

Neuron

 Incoming signals from synapses are summed up 
at the soma

 , the biological “inner product”

 On crossing a threshold, the cell “fires” 
generating an action potential in the axon 
hillock region



Synaptic inputs: 
Artist’s conception



The biological neuron

Pyramidal neuron, from 
the amygdala (Rupshi 
et al. 2005)

A CA1 pyramidal neuron (Mel et 
al. 2004)



Perceptron



The Perceptron Model

A perceptron is a computing element with 
input lines having associated weights and the 
cell having a threshold value. The perceptron 
model is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ



θ

1
y

Step function / Threshold function
y = 1 for  Σwixi >=θ

=0 otherwise

Σwixi



Features of Perceptron

• Input output behavior is discontinuous and the 
derivative does not exist at Σwixi = θ

• Σwixi - θ is the net input denoted as net

• Referred to as a linear threshold element - linearity 
because of x appearing with power 1

• y= f(net): Relation between y and net is non-
linear



Computation of Boolean functions

AND of 2 inputs
X1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1
The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ



Computing parameter values

w1 * 0 + w2 * 0  <= θ  θ >=  0; since y=0

w1 * 0 + w2  * 1  <= θ  w2  <= θ; since y=0

w1 * 1 + w2 * 0  <= θ  w1  <= θ; since y=0

w1 * 1 + w2  *1 > θ  w1 + w2 > θ; since y=1

w1 = w2 =  = 0.5

satisfy these inequalities and find parameters to be used for 
computing AND function.



Other Boolean functions

• OR can be computed using values of w1 = w2 = 
1 and  = 0.5

• XOR function gives rise to the following 
inequalities:

w1 * 0 + w2 * 0  <= θ  θ >=  0

w1 * 0 + w2  * 1  > θ  w2  > θ

w1 * 1 + w2 * 0  > θ  w1  > θ

w1 * 1 + w2  *1 <= θ  w1 + w2 <= θ

No set of parameter values satisfy these inequalities.



Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions 

(2n2)

1 4 4
2 16 14
3 256 128
4 64K 1008

• Functions computable by perceptrons -
threshold functions

• #TF becomes negligibly small for larger values 
of #BF.

• For n=2, all functions except XOR and XNOR 
are computable.



Perceptrons and their computing power 



Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions 

(2n2)

1 4 4
2 16 14
3 256 128
4 64K 1008

• Functions computable by perceptrons -
threshold functions

• #TF becomes negligibly small for larger values 
of #BF.

• For n=2, all functions except XOR and XNOR 
are computable.

Link



Concept of Hyper-planes

 ∑ wixi = θ  defines a linear surface in the 
(W,θ) space, where W=<w1,w2,w3,…,wn> 
is an n-dimensional vector.

 A point in this (W,θ) space 

defines a perceptron.

y

x1

.   .   . 

θ

w1 w2 w3 wn

x2 x3 xn



Perceptron Property

 Two perceptrons may have different 
parameters but same function

 Example of the simplest perceptron

w.x>ɵ gives y=1

w.x≤ɵ gives y=0

Depending on different values of

w and θ, four different functions are 
possible

θ

y

x1

w1



Simple perceptron contd.

10101

11000

F4F3F2F1x

0<=θ

=>θ≥0

w≤ɵ

θ≥0

w> ɵ

θ<0

w≤ ɵ

θ<0

w>ɵ

0-function Identity Function Complement Function

0> ɵ; =>

True-Function



Counting the number of functions 
for the simplest perceptron

 For the simplest perceptron, the equation 
is    w.x=θ.

Substituting x=0 and x=1,

we get θ=0 and w=θ.

These two lines intersect to 

form four regions, which 

correspond to the four functions.

w

w=θ

F1

F3
F4

F2

ɵ



Fundamental Observation

 The number of TFs computable by a perceptron 
is equal to the number of regions produced by 
2n hyper-planes,obtained by plugging in the 
values <x1,x2,x3,…,xn> in the equation 

∑i=1
nwixi= θ



AND of 2 inputs

X1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1
The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ



Constraints on w1, w2 and θ

w1 * 0 + w2 * 0  <= θ  θ >=  0; since y=0

w1 * 0 + w2  * 1  <= θ  w2  <= θ; since y=0

w1 * 1 + w2 * 0  <= θ  w1  <= θ; since y=0

w1 * 1 + w2  *1 > θ  w1 + w2 > θ; since y=1

w1 = w2 =  = 0.5

These inequalities are satisfied by ONE particular region



The geometrical observation

 Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim) 
in d-dim, then what is the max. no. of 
regions produced by their intersection?

i.e., Rm,d = ?



Co-ordinate Spaces

We work in the <X1, X2> space or the <w1, 
w2, Ѳ> space 

W2

W1

Ѳ

X1

X2

(0,0)

(1,0)

(0,1)

(1,1)

Hyper-plane
(Line in 2-D)

W1 = W2 = 1, Ѳ = 
0.5
X1 + x2 = 0.5

General equation of a Hyperplane:
Σ Wi Xi = Ѳ



Regions produced by lines

X1

X2
L1

L2
L3

L4

Regions produced by lines 
not necessarily passing 
through origin
L1: 2

L2: 2+2 = 4

L3: 2+2+3 = 7

L4: 2+2+3+4 = 
11

New regions created = Number of intersections on the incoming line 
by the original lines 
Total number of regions = Original number of regions + New regions 
created



Number of computable 
functions by a neuron

4:21)1,1(

3:1)0,1(

2:2)1,0(

1:0)0,0(

2*21*1

Pww

Pw

Pw

P

xwxw





















P1, P2, P3 and P4 are planes in the 
<W1,W2, Ѳ> space

w1 w2

Ѳ

x1 x2

Y



Number of computable functions by a neuron 
(cont…)

 P1 produces 2 regions
 P2 is intersected by P1 in a line. 2 more new 

regions are produced.
Number of regions = 2+2 = 4

 P3 is intersected by P1 and P2 in 2 intersecting 
lines. 4 more regions are produced.
Number of regions = 4 + 4 = 8

 P4 is intersected by P1, P2 and P3 in 3 
intersecting lines. 6 more regions are produced.
Number of regions = 8 + 6 = 14

 Thus, a single neuron can compute 14 Boolean 
functions which are linearly separable.

P2

P3

P4



Points in the same region

X1

X2If  
W1*X1 + W2*X2 > Ѳ
W1’*X1 + W2’*X2 > Ѳ’
Then

If <W1,W2, Ѳ> and 
<W1’,W2’, Ѳ’> share a 
region then they 
compute the same 
function



No. of Regions produced by 
Hyperplanes



Number of regions founded by n hyperplanes in d-dim passing 

through origin is given by the following recurrence relation

we use generating function as an operating function

Boundary condition:

1 hyperplane in d-dim

n hyperplanes in 1-dim, 

Reduce to n points thru origin 

The generating function is
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From the recurrence relation we have,

Rn-1,d corresponds to ‘shifting’ n by 1 place, => multiplication by x

Rn-1,d-1  corresponds to ‘shifting’ n and d by 1 place => multiplication by xy

On expanding f(x,y) we get
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After all this expansion, 

since other two terms become zero
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This implies

also we have,

Comparing coefficients of each term in RHS we get,
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Perceptron training



Perceptron Training Algorithm 
(PTA)

Preprocessing:

1. The computation law is modified to

y = 1  if  ∑wixi > θ

y = o  if  ∑wixi < θ



.   .   . 

θ, ≤

w1 w2 wn

x1 x2 x3 xn

.   .   . 

θ, <

w1 w2 w3 wn

x1 x2 x3 xn

w3



PTA – preprocessing cont…

2. Absorb θ as a weight



3. Negate all the zero-class examples

.   .   . 

0

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

.   .   . 

θ

w1 w2 w
3

wn

x2 x3 xn
x1



Example to demonstrate 
preprocessing

 OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>



Example to demonstrate 
preprocessing cont..

Now the vectors are

x0 x1 x2

X1 -1   0   1

X2 -1   1   0

X3 -1   1   1

X4 1   0   0



Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail



PTA on NAND
NAND: Y

X2 X1 Y

0     0      1                      

0     1     1 W2 W1

1     0      1               

1     1      0              X2 X1

Converted To   

W2     W1 W0= Θ

X2 X1        X0=-1

Θ



Preprocessing

NAND Augmented:         NAND-0 class Negated

X2 X1 X0 Y                  X2 X1 X0

0     0     -1     1           V0:      0       0     -1

0     1     -1 1 V1: 0       1     -1 

1     0     -1     1           V2:      1       0     -1 

1     1     -1     0           V3: -1       -1     1 

Vectors for which 
W=<W2 W1 W0> has to 
be found such that 
W. Vi > 0



PTA Algo steps
Algorithm:
1.  Initialize and Keep adding the failed vectors

until  W. Vi > 0 is true.

Step 0:  W    =  <0, 0, 0>
W1 =  <0, 0, 0> + <0, 0, -1>     {V0 Fails}

=  <0, 0, -1>
W2 =  <0, 0, -1> + <-1, -1, 1>  {V3 Fails}

=  <-1, -1, 0> 
W3 =  <-1, -1, 0> + <0, 0, -1>    {V0 Fails}

=  <-1, -1, -1>
W4 =  <-1, -1, -1> + <0, 1, -1>  {V1 Fails}

=  <-1, 0, -2>



Trying convergence
W5 =  <-1, 0, -2> + <-1, -1, 1>     {V3 Fails}

=  <-2, -1, -1>

W6 =  <-2, -1, -1> + <0, 1, -1>       {V1 Fails}

=  <-2, 0, -2> 

W7 =  <-2, 0, -2> + <1, 0, -1>       {V0 Fails}

=  <-1, 0, -3>

W8 =  <-1, 0, -3> + <-1, -1, 1>     {V3 Fails}

=  <-2, -1, -2>

W9 =  <-2, -1, -2> + <1, 0, -1>      {V2 Fails}

=  <-1, -1, -3>



Trying convergence
W10 =  <-1, -1, -3> + <-1, -1, 1>     {V3 Fails}

=  <-2, -2, -2>
W11 =  <-2, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-2, -1, -3> 
W12 =  <-2, -1, -3> + <-1, -1, 1>    {V3 Fails}

=  <-3, -2, -2>
W13 =  <-3, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-3, -1, -3>
W14 =  <-3, -1, -3> + <0, 1, -1>      {V2 Fails}

=  <-2, -1, -4>



W15  =  <-2, -1, -4> + <-1, -1, 1>     {V3 Fails}
=  <-3, -2, -3>

W16  =  <-3, -2, -3> + <1, 0, -1>       {V2 Fails}
=  <-2, -2, -4> 

W17  =  <-2, -2, -4> + <-1, -1, 1>    {V3 Fails}
=  <-3, -3, -3>

W18  =  <-3, -3, -3> + <0, 1, -1>       {V1 Fails}
=  <-3, -2, -4>

W2 =  -3,   W1 = -2,   W0 = Θ = -4

Succeeds for all vectors



PTA convergence



Statement of Convergence of 
PTA

 Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



Proof of Convergence of PTA

 Suppose wn is the weight vector at the nth

step of the algorithm. 

 At the beginning, the weight vector is w0

 Go from wi to wi+1 when a vector Xj fails 
the test wiXj > 0 and update wi as 

wi+1 = wi + Xj

 Since Xjs form a linearly separable 
function, 

 w* s.t. w*Xj > 0 j



Proof of Convergence of PTA 
(cntd.)

 Consider the expression
G(wn) =  wn . w*

| wn|

where wn = weight at nth iteration

 G(wn)  = |wn| . |w*| . cos 
|wn|

where  = angle between wn and w*

 G(wn)  = |w*| . cos 

 G(wn) ≤ |w*|  ( as -1 ≤ cos  ≤ 1)



Behavior of Numerator of G

wn . w*  =  (wn-1 + Xn-1
fail ) . w*

 wn-1 . w* + Xn-1
fail . w* 

 (wn-2 + Xn-2
fail ) . w* + Xn-1

fail . w* …..

 w0 . w* + ( X0
fail + X1

fail +.... + Xn-1
fail ). w* 

w*.Xi
fail is always positive: note 

carefully

 Suppose |Xj| ≥  , where  is the 
minimum magnitude. 

 Num of G ≥ |w0 . w*| + n  . |w*| 

 So, numerator of G grows with n.



Behavior of Denominator of G

 |wn| =  (wn . wn)  {the sq root extends over the whole 

expression} 

  (wn-1 + Xn-1
fail )

2

  (wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail )
2

≤  (wn-1)
2 + (Xn-1

fail )
2  (as wn-1. X

n-1
fail 

≤ 0 )

≤  (w0)
2 + (X0

fail )
2 + (X1

fail )
2 +…. + (Xn-1

fail 

)2 

 |Xj| ≤  (max magnitude)

 So, Denom ≤  (w0)
2 + n2



Some Observations 

 Numerator of G grows as n

 Denominator of G grows as  n

=> Numerator grows faster than 
denominator

 If PTA does not terminate, G(wn) values 
will become unbounded.



Some Observations contd. 

 But, as |G(wn)| ≤ |w*|  which is finite, 
this is impossible!

 Hence, PTA has to converge. 

 Proof is due to Marvin Minsky.


