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Monotonicity

 A heuristic h(p) is said to satisfy the 
monotone restriction, if for all ‘p’, 
h(p)<=h(pc)+cost(p, pc), where ‘pc’ is 
the child of ‘p’.



Theorem

 If monotone restriction (also called triangular 
inequality) is satisfied, then for nodes in the 
closed list, redirection of parent pointer is not 
necessary. In other words, if any node ‘n’ is 
chosen for expansion from the open list, then 
g(n)=g*(n), where g(n) is the cost of the 
path from the start node ‘s’ to ‘n’ at that point 
of the search when ‘n’ is chosen, and g*(n) is 
the cost of the optimal path from ‘s’ to ‘n’



Relationship between 
Monotonicity and Admissibility

 Observation: 

Monotone Restriction → Admissibility 
but not vice-versa

 Statement: If h(ni) <= h(nj) + c(ni, nj) 
for all i, j

then h(ni) < = h*(ni)  for all i









The Perceptron Model

A perceptron is a computing element with 
input lines having associated weights and the 
cell having a threshold value. The perceptron 
model is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ



Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail



Convergence of PTA

 Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



End of main points



Perceptrons and their computing 

power 



Fundamental Observation

 The number of TFs computable by a perceptron 
is equal to the number of regions produced by 
2n hyper-planes,obtained by plugging in the 
values <x1,x2,x3,…,xn> in the equation 

∑i=1
nwixi= θ



The geometrical observation

 Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim) 
in d-dim, then what is the max. no. of 
regions produced by their intersection?

i.e., Rm,d = ?



Regions produced by lines

X1

X2
L1

L2
L3

L4

Regions produced by lines 
not necessarily passing 
through origin
L1: 2

L2: 2+2 = 4

L3: 2+2+3 = 7

L4: 2+2+3+4 = 
11

New regions created = Number of intersections on the incoming line 
by the original lines 
Total number of regions = Original number of regions + New regions 
created



Number of computable 
functions by a neuron
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Number of computable functions by a neuron 
(cont…)

 P1 produces 2 regions
 P2 is intersected by P1 in a line. 2 more new 

regions are produced.
Number of regions = 2+2 = 4

 P3 is intersected by P1 and P2 in 2 intersecting 
lines. 4 more regions are produced.
Number of regions = 4 + 4 = 8

 P4 is intersected by P1, P2 and P3 in 3 
intersecting lines. 6 more regions are produced.
Number of regions = 8 + 6 = 14

 Thus, a single neuron can compute 14 Boolean 
functions which are linearly separable.

P2

P3

P4



Points in the same region

X1

X2If  
W1*X1 + W2*X2 > Ѳ
W1’*X1 + W2’*X2 > Ѳ’
Then

If <W1,W2, Ѳ> and 
<W1’,W2’, Ѳ’> share a 
region then they 
compute the same 
function



No. of Regions produced by 
Hyperplanes



Number of regions founded by n hyperplanes in d-dim passing 

through origin is given by the following recurrence relation

we use generating function as an operating function

Boundary condition:

1 hyperplane in d-dim

n hyperplanes in 1-dim, 

Reduce to n points thru origin 

The generating function is
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From the recurrence relation we have,

Rn-1,d corresponds to ‘shifting’ n by 1 place, => multiplication by x

Rn-1,d-1  corresponds to ‘shifting’ n and d by 1 place => multiplication by xy

On expanding f(x,y) we get
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After all this expansion, 

since other two terms become zero
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This implies

also we have,

Comparing coefficients of each term in RHS we get,
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Implication

 R(n,d) becomes for a perceptron with m
weights and 1 threshold R(2m,m+1)

 Total no of Boolean Function is 22^m. Shows 
why #TF << #BF
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PTA convergence



Statement of Convergence of 
PTA

 Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



Proof of Convergence of PTA

 Suppose wn is the weight vector at the nth

step of the algorithm. 

 At the beginning, the weight vector is w0

 Go from wi to wi+1 when a vector Xj fails 
the test wiXj > 0 and update wi as 

wi+1 = wi + Xj

 Since Xjs form a linearly separable 
function, 

 w* s.t. w*Xj > 0 j



Proof of Convergence of PTA 
(cntd.)

 Consider the expression
G(wn) =  wn . w*

| wn|

where wn = weight at nth iteration

 G(wn)  = |wn| . |w*| . cos 
|wn|

where  = angle between wn and w*

 G(wn)  = |w*| . cos 

 G(wn) ≤ |w*|  ( as -1 ≤ cos  ≤ 1)



Behavior of Numerator of G

wn . w*  =  (wn-1 + Xn-1
fail ) . w*

 wn-1 . w* + Xn-1
fail . w* 

 (wn-2 + Xn-2
fail ) . w* + Xn-1

fail . w* …..

 w0 . w* + ( X0
fail + X1

fail +.... + Xn-1
fail ). w* 

w*.Xi
fail is always positive: note 

carefully

 Suppose |Xj| ≥  , where  is the 
minimum magnitude. 

 Num of G ≥ |w0 . w*| + n  . |w*| 

 So, numerator of G grows with n.



Behavior of Denominator of G

 |wn| =  wn . wn

  (wn-1 + Xn-1
fail )

2

  (wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail )
2

≤  (wn-1)
2 + (Xn-1

fail )
2  (as wn-1. X

n-1
fail 

≤ 0 )

≤  (w0)
2 + (X0

fail )
2 + (X1

fail )
2 +…. + (Xn-1

fail 

)2 

 |Xj| ≤  (max magnitude)

 So, Denom ≤  (w0)
2 + n2



Some Observations 

 Numerator of G grows as n

 Denominator of G grows as  n

=> Numerator grows faster than 
denominator

 If PTA does not terminate, G(wn) values 
will become unbounded.



Some Observations contd. 

 But, as |G(wn)| ≤ |w*|  which is finite, 
this is impossible!

 Hence, PTA has to converge. 

 Proof is due to Marvin Minsky.



Feedforward Network and 
Backpropagation



Example - XOR 

w2=1w1=1
θ = 0.5

x1x2 x1x2
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x1 x2
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Gradient Descent Technique

 Let E be the error at the output layer

 ti = target output; oi = observed output

 i is the index going over n neurons in the 
outermost layer

 j is the index going over the p patterns (1 to p)

 Ex: XOR:– p=4 and n=1
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Weights in a FF NN

 wmn is the weight of the 
connection from the nth neuron 
to the mth neuron

 E vs surface is a complex 
surface in the space defined by 
the weights wij

 gives the direction in 
which a movement of the 
operating point in the wmn co-
ordinate space will result in 
maximum decrease in error
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Backpropagation algorithm

 Fully connected feed forward network

 Pure FF network (no jumping of 
connections over layers)

Hidden layers

Input layer            
(n i/p neurons)

Output layer    
(m o/p 
neurons)

j

i

wji

….

….

….

….



Gradient Descent Equations
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Backpropagation – for 
outermost layer
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Backpropagation for hidden 
layers

Hidden layers

Input layer            
(n i/p neurons)

Output layer    
(m o/p 
neurons)j

i

….

….

….

….

k

k is propagated backwards to find value of j



Backpropagation – for hidden 
layers
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General Backpropagation Rule
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How does it work?

 Input propagation forward and error 
propagation backward (e.g. XOR)

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1



x2 x1

h2 h1
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Note: The whole structure shown in earlier slide is reducible 
to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-
OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:
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For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 
single linear neuron, hence no a additional power 
due to hidden layer.

3. Non-linearity is essential for power.
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9.0.. 1  cmwm 



An application in Medical 
Domain



Expert System for Skin Diseases 
Diagnosis

 Bumpiness and scaliness of skin

 Mostly for symptom gathering and for 
developing diagnosis skills

 Not replacing doctor’s diagnosis



Architecture of the FF NN

 96-20-10
 96 input neurons, 20 hidden layer neurons, 

10 output neurons
 Inputs: skin disease symptoms and their 

parameters
 Location, distribution, shape, arrangement, 

pattern, number of lesions, presence of an active 
norder, amount of scale, elevation of papuls, 
color, altered pigmentation, itching, pustules, 
lymphadenopathy, palmer thickening, results of 
microscopic examination, presence of herald 
pathc, result of dermatology test called KOH



Output

 10 neurons indicative of the diseases:

 psoriasis, pityriasis rubra pilaris, lichen 
planus, pityriasis rosea, tinea versicolor, 
dermatophytosis, cutaneous T-cell 
lymphoma, secondery syphilis, chronic 
contact dermatitis, soberrheic dermatitis



Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.
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Training data

 Input specs of 10 model diseases from 
250 patients

 0.5 is some specific symptom value is 
not known

 Trained using standard error 
backpropagation algorithm



Testing

 Previously unused symptom and disease data of 99 
patients

 Result:

 Correct diagnosis achieved for 70% of 
papulosquamous group skin diseases

 Success rate above 80% for the remaining diseases 
except for psoriasis

 psoriasis diagnosed correctly only in 30% of the 
cases

 Psoriasis resembles other diseases within the 
papulosquamous group of diseases, and is somewhat 
difficult even for specialists to recognise.



Explanation capability

 Rule based systems reveal the explicit 
path of reasoning through the textual 
statements

 Connectionist expert systems reach 
conclusions through complex, non linear 
and simultaneous interaction of many 
units

 Analysing the effect of a single input or a 
single group of inputs would be difficult 
and would yield incorrect results



Explanation contd.

 The hidden layer re-represents the data

 Outputs of hidden neurons are neither 
symtoms nor decisions



Discussion

 Symptoms and parameters contributing 
to the diagnosis found from the n/w 

 Standard deviation, mean and other 
tests of significance used to arrive at 
the importance of contributing 
parameters

 The n/w acts as apprentice to the 
expert


