
CS217: Artificial Intelligence and

Machine Learning

(associated lab: CS240)

Pushpak Bhattacharyya
CSE Dept.,

IIT Bombay

Week4 of 27jan25, Perceptron capacity,

FFNN

Main points covered: week3 of
20jan25

Monotonicity

 A heuristic h(p) is said to satisfy the
monotone restriction, if for all ‘p’,
h(p)<=h(pc)+cost(p, pc), where ‘pc’ is
the child of ‘p’.

Theorem

 If monotone restriction (also called triangular
inequality) is satisfied, then for nodes in the
closed list, redirection of parent pointer is not
necessary. In other words, if any node ‘n’ is
chosen for expansion from the open list, then
g(n)=g*(n), where g(n) is the cost of the
path from the start node ‘s’ to ‘n’ at that point
of the search when ‘n’ is chosen, and g*(n) is
the cost of the optimal path from ‘s’ to ‘n’

Relationship between
Monotonicity and Admissibility

 Observation:

Monotone Restriction → Admissibility
but not vice-versa

 Statement: If h(ni) <= h(nj) + c(ni, nj)
for all i, j

then h(ni) < = h*(ni) for all i

The Perceptron Model

A perceptron is a computing element with
input lines having associated weights and the
cell having a threshold value. The perceptron
model is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail

Convergence of PTA

 Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

End of main points

Perceptrons and their computing

power

Fundamental Observation

 The number of TFs computable by a perceptron
is equal to the number of regions produced by
2n hyper-planes,obtained by plugging in the
values <x1,x2,x3,…,xn> in the equation

∑i=1
nwixi= θ

The geometrical observation

 Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim)
in d-dim, then what is the max. no. of
regions produced by their intersection?

i.e., Rm,d = ?

Regions produced by lines

X1

X2
L1

L2
L3

L4

Regions produced by lines
not necessarily passing
through origin
L1: 2

L2: 2+2 = 4

L3: 2+2+3 = 7

L4: 2+2+3+4 =
11

New regions created = Number of intersections on the incoming line
by the original lines
Total number of regions = Original number of regions + New regions
created

Number of computable
functions by a neuron

4:21)1,1(

3:1)0,1(

2:2)1,0(

1:0)0,0(

2*21*1

Pww

Pw

Pw

P

xwxw





















P1, P2, P3 and P4 are planes in the
<W1,W2, Ѳ> space

w1 w2

Ѳ

x1 x2

Y

Number of computable functions by a neuron
(cont…)

 P1 produces 2 regions
 P2 is intersected by P1 in a line. 2 more new

regions are produced.
Number of regions = 2+2 = 4

 P3 is intersected by P1 and P2 in 2 intersecting
lines. 4 more regions are produced.
Number of regions = 4 + 4 = 8

 P4 is intersected by P1, P2 and P3 in 3
intersecting lines. 6 more regions are produced.
Number of regions = 8 + 6 = 14

 Thus, a single neuron can compute 14 Boolean
functions which are linearly separable.

P2

P3

P4

Points in the same region

X1

X2If
W1*X1 + W2*X2 > Ѳ
W1’*X1 + W2’*X2 > Ѳ’
Then

If <W1,W2, Ѳ> and
<W1’,W2’, Ѳ’> share a
region then they
compute the same
function

No. of Regions produced by
Hyperplanes

Number of regions founded by n hyperplanes in d-dim passing

through origin is given by the following recurrence relation

we use generating function as an operating function

Boundary condition:

1 hyperplane in d-dim

n hyperplanes in 1-dim,

Reduce to n points thru origin

The generating function is

1,1,, 1   dnddn RRR n

2

2

1,

,1





n

d

R

R

d

n d

n
dn yxRyxf 










1 1

,),(

From the recurrence relation we have,

Rn-1,d corresponds to ‘shifting’ n by 1 place, => multiplication by x

Rn-1,d-1 corresponds to ‘shifting’ n and d by 1 place => multiplication by xy

On expanding f(x,y) we get

01,1,, 1   dnddn RRR n













........

.....

........

........),(

,
3

3,
2

2,1,

2
,2

32
3,2

22
2,2

2
1,2

,13,12,11,1
32

dn
dn

n
n

n
n

n
n

d
d

d

yxRyxRyxRyxR

yxRyxRyxRyxR

yxRyxRyxRxyRyxf
d








































































































22 2

,1

2

1,1

2 2

,1

2 2

1,1
1

1 1

1
,

2 1

,1

1 1

1
,

1 1

,

2

),(

),(

),(

),(

n

n

n d

dn
dn

n

n
n

n d

dn
dn

d

n d

n
dn

d

n d

n
dn

d

n d

n
dn

n d

dn
dn

d

n d

n
dn

yxyxR

yxRyxRyxfx

yxRyxRyxfxy

yxRyxRyxfx

yxRyxf

After all this expansion,

since other two terms become zero

xyyxyxyxyxR

xyRyxRxyRyxR

yxRyxf

n

n

d

dd

n d

n
dn

n

n
n

d

d
d

d

n d

n
dn

d

n d

n
dn

222

),(

112 2

,

1,1

1

1,

1

,1

2 2

,

1 1

,







































































































1

121

2 2

1,1,1,

2

2222

)(

d

d

d

d

nn

d

d

n d

n
dndndn

yx

yxxyxyxy

yxRRR

),(),(),(yxfxyyxfxyxf 

This implies

also we have,

Comparing coefficients of each term in RHS we get,

].....)1(...)1()1(1[

]........[2

2
)]1(1[

1
),(

2),(]1[

22

32

1

1























dd

d

d

d

d

d

yxyxyx

yyyyx

yx
yx

yxf

yxyxfxyx

d

n d

n
dn yxRyxf 










1 1

,),(









1

0

1
2

d

i

n

iC

Comparing co-efficients we get

dnR ,

Implication

 R(n,d) becomes for a perceptron with m
weights and 1 threshold R(2m,m+1)

 Total no of Boolean Function is 22^m. Shows
why #TF << #BF

)2(

2

2

2

0

12

11

0

12

m

m

i
i

m

i
i

O

C

C

m

m





















PTA convergence

Statement of Convergence of
PTA

 Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

Proof of Convergence of PTA

 Suppose wn is the weight vector at the nth

step of the algorithm.

 At the beginning, the weight vector is w0

 Go from wi to wi+1 when a vector Xj fails
the test wiXj > 0 and update wi as

wi+1 = wi + Xj

 Since Xjs form a linearly separable
function,

 w* s.t. w*Xj > 0 j

Proof of Convergence of PTA
(cntd.)

 Consider the expression
G(wn) = wn . w*

| wn|

where wn = weight at nth iteration

 G(wn) = |wn| . |w*| . cos 
|wn|

where  = angle between wn and w*

 G(wn) = |w*| . cos 

 G(wn) ≤ |w*| (as -1 ≤ cos  ≤ 1)

Behavior of Numerator of G

wn . w* = (wn-1 + Xn-1
fail) . w*

 wn-1 . w* + Xn-1
fail . w*

 (wn-2 + Xn-2
fail) . w* + Xn-1

fail . w* …..

 w0 . w* + (X0
fail + X1

fail +.... + Xn-1
fail). w*

w*.Xi
fail is always positive: note

carefully

 Suppose |Xj| ≥  , where  is the
minimum magnitude.

 Num of G ≥ |w0 . w*| + n  . |w*|

 So, numerator of G grows with n.

Behavior of Denominator of G

 |wn| =  wn . wn

  (wn-1 + Xn-1
fail)

2

  (wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail)
2

≤  (wn-1)
2 + (Xn-1

fail)
2 (as wn-1. X

n-1
fail

≤ 0)

≤  (w0)
2 + (X0

fail)
2 + (X1

fail)
2 +…. + (Xn-1

fail

)2

 |Xj| ≤  (max magnitude)

 So, Denom ≤  (w0)
2 + n2

Some Observations

 Numerator of G grows as n

 Denominator of G grows as  n

=> Numerator grows faster than
denominator

 If PTA does not terminate, G(wn) values
will become unbounded.

Some Observations contd.

 But, as |G(wn)| ≤ |w*| which is finite,
this is impossible!

 Hence, PTA has to converge.

 Proof is due to Marvin Minsky.

Feedforward Network and
Backpropagation

Example - XOR

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

Gradient Descent Technique

 Let E be the error at the output layer

 ti = target output; oi = observed output

 i is the index going over n neurons in the
outermost layer

 j is the index going over the p patterns (1 to p)

 Ex: XOR:– p=4 and n=1


 


p

j

n

i

jii otE
1 1

2)(
2

1

Weights in a FF NN

 wmn is the weight of the
connection from the nth neuron
to the mth neuron

 E vs surface is a complex
surface in the space defined by
the weights wij

 gives the direction in
which a movement of the
operating point in the wmn co-
ordinate space will result in
maximum decrease in error

W

m

n

wmn

mnw

E






mn

mn
w

E
w






Backpropagation algorithm

 Fully connected feed forward network

 Pure FF network (no jumping of
connections over layers)

Hidden layers

Input layer
(n i/p neurons)

Output layer
(m o/p
neurons)

j

i

wji

….

….

….

….

Gradient Descent Equations

i

ji

j

ji

j

th

j

ji

j

jji

ji

ji

jo
w

net
jw

j
net

E

net
w

net

net

E

w

E

w

E
w






































)neuron j at theinput (

)10 rate, learning(

Backpropagation – for
outermost layer

ijjjjji

jjjj

m

p

pp

th

j

j

j

jj

ooootw

oootj

otE

net
net

o

o

E

net

E
j

)1()(

))1()((Hence,

)(
2

1

)layer j at theinput (

1

2





























Backpropagation for hidden
layers

Hidden layers

Input layer
(n i/p neurons)

Output layer
(m o/p
neurons)j

i

….

….

….

….

k

k is propagated backwards to find value of j

Backpropagation – for hidden
layers

)1()(

)1()(Hence,

)1()(

)1(

layernext

layernext

layernext

jj

k

kkj

jj

k

kjkj

jj

k j

k

k

jj

j

j

j

jj

iji

oow

oow

oo
o

net

net

E

oo
o

E

net

o

o

E

net

E
j

jow
























































General Backpropagation Rule

ijj

k

kkj ooow)1()(
layernext

 




)1()(jjjjj ooot 

iji jow 
• General weight updating rule:

• Where

for outermost layer

for hidden layers

How does it work?

 Input propagation forward and error
propagation backward (e.g. XOR)

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

x2 x1

h2 h1

33 cxmy 

11 cxmy 22 cxmy 

1221111)(cxwxwmh 

1221111)(cxwxwmh 

32211

32615)(

kxkxk

chwhwOut





Can Linear Neurons Work?

Note: The whole structure shown in earlier slide is reducible
to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-
OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:

32211 kxkxkOut 

1.0.

1.0)0.0.(21









mc

cwwm

9.0..

9.0)0.1.(

1

12





cmwm

cwwm





For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a
single linear neuron, hence no a additional power
due to hidden layer.

3. Non-linearity is essential for power.

9.0.. 1  cmwm 

9.0.. 1  cmwm 

An application in Medical
Domain

Expert System for Skin Diseases
Diagnosis

 Bumpiness and scaliness of skin

 Mostly for symptom gathering and for
developing diagnosis skills

 Not replacing doctor’s diagnosis

Architecture of the FF NN

 96-20-10
 96 input neurons, 20 hidden layer neurons,

10 output neurons
 Inputs: skin disease symptoms and their

parameters
 Location, distribution, shape, arrangement,

pattern, number of lesions, presence of an active
norder, amount of scale, elevation of papuls,
color, altered pigmentation, itching, pustules,
lymphadenopathy, palmer thickening, results of
microscopic examination, presence of herald
pathc, result of dermatology test called KOH

Output

 10 neurons indicative of the diseases:

 psoriasis, pityriasis rubra pilaris, lichen
planus, pityriasis rosea, tinea versicolor,
dermatophytosis, cutaneous T-cell
lymphoma, secondery syphilis, chronic
contact dermatitis, soberrheic dermatitis

Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.

5

(Dermatophytosis node)

0

(Psoriasis node)

Disease

diagnosis

19

14

13

0

1.62

1.68

Symptoms & parameters
Duration

of lesions : weeks 0

1

6

10

36

171

95

96

Duration

of lesions : weeks

Minimal itching

Positive

KOH test

Lesions located

on feet

Minimal

increase

in pigmentation

Positive test for

pseudohyphae

And spores

Bias

Internal

representation

20
Bias

9

(Seborrheic dermatitis node)

Training data

 Input specs of 10 model diseases from
250 patients

 0.5 is some specific symptom value is
not known

 Trained using standard error
backpropagation algorithm

Testing

 Previously unused symptom and disease data of 99
patients

 Result:

 Correct diagnosis achieved for 70% of
papulosquamous group skin diseases

 Success rate above 80% for the remaining diseases
except for psoriasis

 psoriasis diagnosed correctly only in 30% of the
cases

 Psoriasis resembles other diseases within the
papulosquamous group of diseases, and is somewhat
difficult even for specialists to recognise.

Explanation capability

 Rule based systems reveal the explicit
path of reasoning through the textual
statements

 Connectionist expert systems reach
conclusions through complex, non linear
and simultaneous interaction of many
units

 Analysing the effect of a single input or a
single group of inputs would be difficult
and would yield incorrect results

Explanation contd.

 The hidden layer re-represents the data

 Outputs of hidden neurons are neither
symtoms nor decisions

Discussion

 Symptoms and parameters contributing
to the diagnosis found from the n/w

 Standard deviation, mean and other
tests of significance used to arrive at
the importance of contributing
parameters

 The n/w acts as apprentice to the
expert

