CS217: Artificial Intelligence and
Machine Learning
(assoclated lab: CS240)

Pushpak Bhattacharyya
CSE Dept.,
I[IT Bombay

Week5 of 3feb25, sigmoid, softmax

Main points covered: week3 of
27jan25

Fundamental Observation

= The number of TFs computable by a perceptron
is equal to the number of regions produced by
2" hyper-planes,obtained by plugging in the
values <Xy,X5,X3,...,X,> in the equation

2i=1"WX;= 6

Number of regions founded by n hyperplanes in d-dim passing
through origin is given by the following recurrence relation

Rhnd=Ri_1d4+Rn-1d-1

we use generating function as an operating function

Boundary condition:
Rig=2 1 hyperplane in d-dim
Rni=2 n hyperplanes in 1-dim,
Reduce to n points thru origin

The generatin functlon IS © Z
:) ¥)=> D Rna-x"y*

n=1l d=1

Comparing co-efficients we get

R, a=25 C™

Implication

= R(n,d)becomes for a perceptron with m

=0(2™)

= Total no of Boolean Function is 22"™, Shows
why #TF << #BF

Gradient Descent Technique

Let E be the error at the output layer

ZZ(t -0,):

j=1 i=1

t. = target output; o, = observed output

| is the index going over n neurons in the
outermost layer

j is the index going over the p patterns (1 to p)
Ex: XOR:— p=4 and n=1

Weights in a FF NN

= W, is the weight of the
connection from the nt" neuron
to the mth neuron

E vs w surface is a complex
surface in the space defined by
the weights w,

—5\% gives the direction in
which a movement of the
operating point in the w,, co-
ordinate space will result in
maximum decrease in error

AWmn o =
OW

mn

Backpropagation algorithm

Q Q Q_] Q . Output layer

(m o/p
Q Q Q neurons)
Hidden layers
() () e () —— Inputlayer

(n i/p neurons)

= Fully connected feed forward network

= Pure FF network (no jumping of
connections over layers)

General Backpropagation Rule

e General weight updating rule:
AWji =10Jo,

e Where

6; =(t; —0;)0;(1—0;) for outermost layer

- Z(ij5k)01 (1—0,-)Oi for hidden layers

kenext layer

Duration . Symptoms & parameters Internal_
of lesions : weeks m representation _
Disease
diagnosis

Duration
of lesions : weeks

v

/

Minimal itching e 0

® (Psoriasis node)
Positive °
KOH test
- 10

v

Lesions located .

(Dermatophytosis node)
on feet *

36

Minimal
increase [
in pigmentation 71

v

/

Positive test for
pseudohyphae ®
And spores 95

9
(Seborrheic dermatitis node)

— 19

. L

20

k k. ;o
/

Bias

Bias e
96

Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.

End of main points

Sigmoid

Sigmoid neuron

Sigmoid function: can saturate

= Brain saving itself from itself, in case of
extreme agitation, emotion etc.

Definition: Sigmoid or Logit
function

1 y = 1
Y T e 1+e™
dy ﬂ — kv(] —
ol Yi-y) g y(1-y)

If k tends to infinity, sigmoid tends
to the step function

Sigmoid function

' f fo) = =%

0.5 dgj}__ Ei (1+E)
J o

| _— | , | — (1_)

6 -4 -2 0 2 4 6 1+E 1+f

= f(x).(1 - f(x))

Decision making under sigmoid

= Output of sigmod is between 0-1

= Look upon this value as probability of Class-1
(C)

s 1-sigmoid(x) is the probability of Class-2 (C)
s Decide C,, if P(C,) > P(C,), else C,

Sigmoid function and
multiclass classification

= Why can’t we use sigmoid for n-class
classification? Have segments on the curve
devoted to different classes, just like —infinity
to 0.5 is for class 2 and 0.5 to plus infinity is
class 2.

= Think about it!!

multiclass: SOFTMAX

= 2-class =2 multi-class (C classes)
= Sigmoid > softmax

= M input, d class (small c), ¢ varies over
classes

= In softmax, decide for that class which has
the highest probability

What is softmax

= Turns a vector of K'real values into a
vector of Kreal values that sum to 1

= Input values can be positive, negative,
zero, or greater than one

s But softmax transforms them into values
between 0 and 1

= SO that they can be interpreted
as probabilities.

Mathematical form

G(i)i =

= Ois the softmax function
= Zis the input vector of size K

= The RHS gives the # component of the output
vector

= Input to softmax and output of softmax are of
the same dimension

~ Example

/ =<1 2 3>

,=1272,=2,27,=3

el =2.72,e% =7.39, e* =20.09

2.2 /.39 20.09

]] >
2.12+7.39+20.09 2.72+7.39+20.09 2.72+7.39+20.09
=<.09,0.24,0.67 >

o(Z) =<

Softmax and Cross Entropy

= Intimate connection between softmax
and cross entropy

= Softmax gives a vector of probabilities

= Winner-take-all strategy will give a
classification decision

Winner-take-all with softmax

s Consider the softmax vector obtained from
the example where the softmax vector is
<0.09, 0.24, 0.65>

= These values correspond to 3 classes
« For example, - positive (+), negative (-) and
neutral (0) sentiments, given an input sentence
like
« (a) I like the story line of the movie (+). (D)
However the acting is weak (-). (c) The
protagonist is a sports coach (0)

Sentence vs. Sentiment

Sentence vs. Positive Negative Neutral
Sentiment (a) I like the story line of the movie (+).
(b) However the acting is weak (-).
(¢c) The protagonist is a sports coach (0)
Sent (a) 1 0 0
(P.ox from
softmax)
Sentence (b) 0 1 0
(P..., from
softmax)
Sentence (C) 0 0 1
(Pmax from

softmax)

Training data

* (a) I like the story line of the movie (+).
* (b) However the acting is weak (-).
* (c) The protagonist is a sports coach (0)

Input Output
(a) <1,0,0>
(b) <0,1,0>

(C) <0,0,1>

Finding the error

= Difference between target (T) and
obtained (Y)

= Difference is called LOSS
= Options:
= Total Sum Square Loss (TSS)

» Cross Entropy (measures difference
between two probability distributions)

= Softmax goes with cross entropy

Cross Entropy Function

H(P,Q)=~2, 2 P(xk)log, Q(xk)

x=1,N k=1,C

x varies over N data instances, c¢varies over C classes
Pis target distribution; Qis observed distribution

Cross Entropy Loss

= Can we sum up cross entropies over the instances?
Is it allowed?

= Yes, summing up cross entropies (i.e. the total cross
entropy loss) is equivalent to multiplying
probabilities.

= Minimizing the total cross entropy loss is equivalent
to maximizing the likelihood of observed data.

How to minimize loss

= Gradient descent approach
= Backpropagation Algorithm

= Involves derivative of the input-output function
for each neuron

= FFNN with BP is the most important
TECHNIQUE for us in the course

Sigmoid and Softmax neurons

Sigmoid neuron

Softmax Neuron

Output for class c (small c), c:1 to C

Notation
O /=.Z/V
= /Vi-0 pairs, /runs over the training data

= j=0...m, mcomponents in the input vector,
runs over the input dimension (also weight
vector dimension)

s k=1...C, Cclasses (C components in the output
vector)

Fix Notations: Single Neuron (1/2)

= Capital letter for vectors

= Small letter for scalars
(therefore for vector
components)

= X: /" input vector
= 0; output (scalar)
= Wi weight vector

n net; W.X

Xi = There are ninput-output
observations

Fix Notations: Single Neuron (2/2)

m-1Xim_2 Xiz
|
W and each X has m components
Wi<w,, W,._,, ..., Wy, Wy>
X<X , Xy ooy Xy X >
Upper suffix /indicates #7 input

\

Fixing Notations: Multiple neurons in o/p
layer

Now, O and NET are vectors for 7 input
W.is the weight vector for ¢ output neuron, c=1..C

Fixing Notations

OI

:sI O
D
—
(@)
@)
(@)
@ KN
(@)
|—L
- Q.
() N
.
N
Qo_.
(D —t
.
—

Target Vettor, 7 <t t.,..t, ¢,>, i for # input.
Only one of these C componets is 1, rest are 0

Derivatives

Derivative of sigmoid
i 1

0' = _fori" input
1+e™
Ino' =—In(Ll+e™)
i | —net’ |
1. ao — = — 1 : .—e_net — © : :(1_()')
OI anetl 1_|_e—net 1_|_e—net
- 90 =0'(1-0')

onet'

Derivative of Softmax

net.

i €

¢~ C |
Zenetli
k=1

O

1™ input pattern

Derivative of Softmax: Case-1, class ¢
for O and NET same

i : C i
Ino; =net, —In() e"™)
k=1

1 Oi 1 net! [
i 86 (j[i =1-— e™ =1-o,
0. one net,
C C e k
50}

— ¢ —0'(1-0
onet (10)

perivative or Sortmax. Lase-2,
class ¢’in net . different from
class cof O

.] C i
Ino; = net, —In() e"™)
k=1

1 50:3 1 net'. i
; -=0-— - =-0,
0, onet_ Zenet'k
k=1
00! L
— =—0.0.

onet’. ¢
C

Finding weight change rule

Foundation: Gradient descent

Change is weight 4w);= AtA, 5L/ 5w is negative, so
-OL/ ow;; Aw; is positive.
n= learning rate, At B, 8L/ 6w is positive,

L=loss, w;= weight of

i so Aw: IS negative.
connection from the J J

neuron to j" E always decreases.
Greedy algo.
E A
~ 7
B

ji

Gradient Descent is Greedy!

= Gradient Descent is greedy- always moves in
the direction of reducing error

= Probabilistically also move in the direction of
increasing error, to be able to come out of
local minimum

= Nature randomly introduces some variation,
and a totally new species emerges

= Darwin’s theory of evolution

Genetic Algorithm

= Genetic Algorithms: adaptive heuristic search
algorithms

= Used to generate high-quality solutions for
optimization problems and search problems

= 10 evolve the generation, genetic algorithms
use the following operators, all
PROBABILSTICALLY

= Selection, Cross over, Mutation

Single sigmoid neuron and cross entropy loss,
derived for single data point, hence dropping

upper right suffix 7
0 oL oL oo onet
ow, 00 onet ow,
L=-tlogo—(1-t)log(l-0)
oL t 1-t t—o
= — =t ==
00 o 1-o0 0(1-o0)
1 00
= =
1+e™™ oOnet

3 m onet
M1 X0 net=2wjxj = =

het

0 =0(1-0)

Multiple neurons in the output layer: softmax+cross entropy
loss (1/2): illustrated with 2 neurons and single training data
point

O=<o0,0, >
NET =< net, net, >

net, net,

0, = nete ety + Q0 =
e™ +e™

| 90, 00,

~ 00 | dnet, dnet,

ONET | 0o, 0o

| onet, oOnet,

_ {Oo (1_00) — 0,0, }

— 0,0 0, (1 - 01)

e
e™ +e

net,

Xm Xm-1 Xm-2 X2 X Xo

Softmax and Cross Entropy (2/2)

L =-t logo, —t,logo,
enet1 net,

0, = , 0, =
1 enet1 _|_enet0

€
enet1 n enet0

do, _ 00, oOne N 00, onet
ow,, onet, ow, onet, ow
00, _ 00, Onet N 00, oOnet,
ow,, onet, ow, onet, ow,

=—0,0,% +0

oL
- =—t,(1-0,)X +1t,0,% = —t,(1-0,)X +(1—t,)0 X,
11
=[-t, +t,0, +0, —1,0,]x, = —(t, —0,) X,
ok
AW, =-n——=n(t, —0)X,

aW’H

Can be generalized

= When L is Cross Entropy Loss, the change in
any weight is

learning rate *

diff between target and observed
outputs *

input at the connection

Weight change rule with TSS

Single neuron: sigmoid+total
sum square (tss) loss

Lets consider wilg w,. Change is
weight Aw,= -ndL/ dw,
n=learning rate,

L=loss= %(t-0)?,
t=target, o=observed output

oL oL oo onet
ow, 00 onet ow,

1 , oL
L==(t-0)? = —=—(t-0
2() P (t—o)

(sigmoid) = -2 = o(1-0)
onet

L onet
net=» wx — =X

i=0 1

= Aw, =7n7(t—0)o(1-0)x,

Single neuron: sigmoid+total
sum square (tss) loss (cntd)

Aw, = n(t-0)o(1-0)x,

Multiple neurons in the output layer:
sigmoid+total sum sqguare (tss) loss

et, Target vector: <t, t>

Observed vector:
<04, 0p>

(t5-00)°]

Awy; = n(t1-041)04(1-09)X;

Backpropagation

With total sum square loss (TSS)

Backpropagation algorithm

Q Q Q_] Q . Output layer

(m o/p
Q Q Q neurons)
Hidden layers
() () e () —— Inputlayer

(n i/p neurons)

= Fully connected feed forward network

= Pure FF network (no jumping of
connections over layers)

Gradient Descent Equations

OE .
Aw;, = -1 —— (n7 = learning rate, 0 <77 <1)

W,

onet.
ok __%E | - (net; =input at the j" neuron)
oW onet. ow,

n J n

! A quantity of great
Importance

Backpropagation — for
outermost layer

ok éE 0.
o = — J net, = input at the j " laver
J set o0, onet (p j" layer)

18 5
E=Z> (t;—0;)
2 4

Hence, 6 = —(—(t; —0,)0;(1-0;))
Aw;; =n(t; —0,;)0;(1-0;)o,

Observations from AW
Aw;; =n(t; —0,;)0,(1-0;)0,

Aw;; =0 If,
1.01.—>tj and/or

2. 0, —1 and/or

3. 0, — 0 and/or

4.0 >0

> Saturation behaviour

J

| Credit/Blame assignment

Backpropagation for hidden
layers

k — Output layer
O\@/Q O (mo/p
O 5 ..

j Q neurons)
Hidden layers
() () = () —— [Inputlayer

(n i/p neurons)

dx Is propagated backwards to find value of &;

Backpropagation — for hidden

layers
y AW;; =ndjo,
o= éE 0,
J=m =
5netj 50 5net
oE
=——x0.(1-0,)
é‘oj J J
This recursion can o= 5netk
. . . = — x0.(1-o0.
give rise to vanishing kem;ayer (5net 50.) ()

and exploding ‘
Gradient problem Hence, 5 =- Z (-8, xW,;)x0;(1-0,)

\ kenext layer
= D (W5,)o;(1-0))

kenext layer

Back-propagation- for hidden
layers: Impact on net input on a
neuron

w O; affects the
net input
coming to all
the neurons
in next layer

General Backpropagation Rule

e General weight updating rule:
AWji =10Jo,

e Where

6; =(t; —0;)0;(1—0;) for outermost layer

= > (W;8,)0;(1-0;) for hidden layers

kenext layer

Vanishing/Exploding Gradient problem

6x1
W21,1M1,1
On12 Oh11 y
21,11
W, 1o 21,12 /é\
Orpro Ot21 5 6H21
H22
W, 121
122 602 1 22
2,22 501

Oy1 =Wi; 1041 (-)"‘W21,15H1f (),
f'(.) is derivative of sigmoid
66

Vanishing/Exploding Gradient
Oy1 =W 10411 (L) + Wy 101,

(.)[2 terms]
6x1

=W 1(Wyq 110401 F()+ W21,1M1,1
V,V22,116H22f ())) 6
f (-)+W21,?(W21,1:125H21f ()+ 6H 12 H11 W
W5 1500-f'(1)) F'(.) [4 terms :

2,120m22f (1)) () []lelz m
= (4 terms with 0,,) + (4 Oppq o
terms with &,; one 6H22 6H22 Hv%/l
term shown for the Ieftmo% W;2 121 W, 4 \ 2
leaf’s weight); also each ~_* 61'22 Oo2 50\/\% 2 o Bo;
term has product of 002 01 S0 2228 02
derivatives

W11,1W21,11W1,21

67

Vanishing/Exploding Gradient

With '8 as branching factor and
‘L" as number of levels,

There will be B terms in the final 6)(1

Expansion of d,;. Also each term

Will be Broduct of L weights
2 O,

N

OH12 OH11

Oz Ot21 5{2\%21
/\ 602/\60/\ /\601

002

Each term also gets multiplied with
product of derivatives of sigmoid L times.
These products can vanish or explode. ¢g

FFNN: Working with RELU

Rectifier Linear Unit

What is RELU

y=relu(x)=max(0,x)

dy/dx
= 0 for x<o
= 1 for x>0

= (0 (forced to be 0 at X= O though
does not exit)

Output sigmod and hidden neurons
as REL

oE
AWji :_Uﬁji
H; 1 n = learning rate, 0 <7 <1
W5 oE ¢k ><&”letj

Sw, onet; dw,

ji

- -th
net; = input at the J= neuron)

X5 o= g
onet;
onet;
Awj; =1nd) S =10]0;

Backpropagation — for
outermost layer

o, = éE ,
net; = input at the | layer
5netj 50 5net (P J" layer)

1 2
= =3t -0
;2 (6-0,)
Hence, & =—(—(t; —0,)0,(1-0,))
AWji :77(tj —Oj)Oj(l—Oj)Oi

5 =-

Backpropagation — for hidden

layers
Aw;; =ndjo,
5 = oE éE 0,
onet; 50 met
__ %k x (Lor 0)
a)J'
This recursion can o= 5netk
give rise to vanishing ~— Z (5n t)x(1or0)
and exploding kenextlayer j
Gradient problem Hence, &, = - Z (-5, x W,)x (L or 0)
\ kenext layer
= > (w6,)or0

kenext layer

Backpropagation Rule for weight change with
RELU, Sigmoid and TSS

AWji =1n0Jo,

6; =(t; —0;)0;(1—0;) for outermost layer

= > (Wg8,)or0 for hidden layers

kenext layer

74

Softmax, Cross Entropy and
RELU

Cross Entropy Function

H(P,Q) =~ P(x)log, Q(x)

Pis target distribution, Qis observed
distribution

e.g., Positive, Negative, Neutral Sentiment
X: input sentence: 7he movie was excellent
P(x): <1,0,0>, Q(x): <0.9,0.02,0.08>, (say)
H(PQ)=-log0.9=/og(10/9)

Deriving weight change rules

Cross Entropy Softrmax combination

A very ubiquitous combination in neural
combination

Foundation: Gradient descent

Change is weight Aw;= - AtA, 5L/ dw; is negative, so
noL/ ow; Aw; is positive. At B, 6L/ dw;
n= learning rate, L=Ioss, |s positive, S0 S0 Aw;; is

w;= welght of connection negative. L *always

from the /" neuron to J decreases. Greedy algo.

ji

Single neuron: sigmoid+cross
entropy loss

oL oL oo onet
ow, 00 oOnet ow,
L=-tlogo—(1-t)log(l—0)

(sigmoid) = 2% — 0(1—0) (2)
onet

onet

=X (3)

FEFNIN WITN U4-U, SOItmax, all nidden neurons

RELU, Cross Entropy Loss

We will apply the
Aw;=no0;rule

80

Gaeneral vwelgnt Lriange
Equation

AW, 51 =110, Ny,
SE E=-t,logo, -t logo,

net net, 1
> O 0E _OE 0o 0B oo,

Wa22 % Wi onet, 0, onet, 60 Onet,
H-, - Hy4

t
=—-= 0, (1_ 01) + (_ _2)(_0102)
1 2
= _tl(l_ol) +1,0,
=—1,0, +1,0,= _(tl — 01)
AW, 5, =n(t;-0)h,, | =9, =, -0)
Similarly, 6, =(t,-0,)

Weight Change for Hidden Layer, W,
OE
8\,\/21,11
. GE
onet,,

0E GE ohy,
onet, oh, onet,

AWy 4y = =17 =10y ” hy,

H21

;h,, = output(H,,)

= aahE r'(H,,); r'=derivative_RELU(H,)
21
oE oE onet; OE Onet,
W — . + .
21,11 oh,, onet, oh,, onet, oh,,

— (_501)-\/\/1,21 + (_502)-\/\/2,21
— 5H21 — (501 -W1,21 + 502W2,21).|"(H21)
= backpropagated _delta.RELU _ derivative

AW,, 1= n[(tz'oz)wz,n"'(t1'°1)w1,21]-r'(H:l1)-h11

Example

There is a pure feedforward network 2-2-2 (2
input, 2 hidden and 2 output neurons). Input
neurons are called X, and X, (right to left when
drawn on paper, X, to the right of X,). Similarly
hidden neurons are H; and H, (right to left)
and output neurons are O, and O, (right to

left). H; and H, are RELU neurons. O, and O,
form a softmax layer.

Remember: weight change rules

AW, =n[(t,-0,)W?2,;+(t;-0,)W1,].r'(H,).X,

84

Why is RELU a solution for
vanishing or exploding
gradient?

Vanishing/Exploding Gradient

0,1 =Wy 10411+ W15 10415

86

Vanishing/Exploding Gradient
Oy1 =W 10411+ Wy 10415 [2

terms] 6)(1
W W
\TVW11,1B(W2)1,11(|6_|H21)+ 21,1/\611,1
22,11922)-F (Hy1)+ 0
Wo1,1(Way, 120021+ W e } Wo1,11
sz 126H22) r'(Hy,) [4 terms] Mﬂllz /é\
OHy Ot21 5 Op1
= (4 terms involving 0,;) + W H22 w. /Wi
(4 terms involving &,,) W, 22 5 o
5 O 02 LN Bo; Oon
ds get multiplied by 02 Ot 80 " Oor /
derivatives of RELU which
W11,1W21,11W1,21

are 1 or 0; hence 0s from
the output layer pass as
such oras 0

87

Vanishing/Exploding Gradient

With '8 as branching factor and
‘L" as number of levels,

There will be B terms in the final
Expansion of d,;. Also each term

Will be Broduct of L weights
2 O,

On12 Oh11
' H21
0O 6H21
H22 6H22
W1 11 /\ 5 /\
o) 0
My o) Oo1 02
02 5y, Oo1

88

How can gradients explode

= Station derivatives multiply
= If <0, progressive attenuation of product

= Now the sigmoid function can be in the form
of y=K/1/(1+€*)]

= Derivative= K.y.(1-y)

= If K'is more than 1, the product of gradients

can become larger and larger, leading to
explosion of gradient

= K needs to be >1, to avoid saturation of
Neurons

Can happen for fanh too
= Tanh: y=/(e¥-e%)/(e*+€*)]
= Derivative= (1-y)(1+y)

= If we take a neuron with K.ftanh, we can again
have explosion of gradient if K>1

= Why K'needs to be >17?

= T0 take care of situations where #inputs and
individual components of input are large

= This is to avoid saturation of the neuron

