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Inferencing in Predicate Calculus

■ Forward chaining
■ Given P,           , to infer Q
■ P, match L.H.S of 
■ Assert Q from R.H.S

■ Backward chaining
■ Q, Match R.H.S of
■ assert P
■ Check if P exists

■ Resolution – Refutation
■ Negate goal
■ Convert all pieces of knowledge into clausal form (disjunction of 

literals)
■ See if contradiction indicated by null clause       can be derived



Wh-Questions and Knowledge
what

how

why

where

which

who

when

Factoid / Declarative

procedural

Reasoning



Knowledge Representation of 
Complex Sentence

■ “In every city there is a thief who is 
beaten by every policeman in the city”



Interpretation in Logic

■ Logical expressions or formulae are “FORMS” 
(placeholders) for whom contents are created 
through interpretation.

■ Example:

■ This is a Second Order Predicate Calculus 
formula.

■ Quantification on ‘F’ which is a function.



■ Interpretation:1
D=N (natural numbers) 
a = 0 and b = 1
x ∈ N
P(x) stands for x > 0
g(m,n) stands for (m x n)
h(x) stands for (x – 1)

■ Above interpretation defines Factorial

Examples



■ Interpretation:2
D={strings)

       a = b = λ 
P(x) stands for “x is a non empty string”
g(m, n) stands for “append head of m to n”
h(x) stands for tail(x)

■ Above interpretation defines “reversing a 
string”

Examples (contd.)



End main points



Prolog



Introduction

■ PROgramming in LOGic
■ Emphasis on what rather than how

Basic Machine

Logic Machine

Problem in Declarative Form



A Typical Prolog program
Compute_length ([],0).
Compute_length ([Head|Tail], Length):-

Compute_length (Tail,Tail_length),
Length is Tail_length+1.

High level explanation:
The length of a list is 1 plus the length of the 
tail of the list, obtained by removing the first 
element of the list.

This is  a declarative description of the 
computation.



Fundamentals

(absolute basics for writing Prolog 
Programs)



Facts
■ John likes Mary

■ like(john,mary)
■ Names of relationship and objects must begin 

with a lower-case letter.
■ Relationship is written first (typically the 

predicate of the sentence).
■ Objects are written separated by commas and 

are enclosed by a pair of round brackets.
■ The full stop character ‘.’ must come at the 

end of a fact.



More facts

Predicate Interpretation

valuable(gold) Gold is valuable.

owns(john,gold) John owns gold.

father(john,mary) John is the father of 
Mary

gives (john,book,mary) John gives the book to 
Mary



■ Questions based on facts
■ Answered by matching
Two facts match if their predicates are same 

(spelt the same way) and the arguments each 
are same.

 
■ If matched, prolog answers yes, else no.
■ No does not mean falsity.

Questions



Prolog does theorem proving

■ When a question is asked, prolog tries 
to match transitively.

■ When no match is found, answer is no.
■ This means not provable from the given 

facts.



Variables

■ Always begin with a capital letter
■ ?- likes (john,X).
■ ?- likes (john, Something).

■ But not  
■ ?- likes (john,something)



Example of usage of variable
Facts:

likes(john,flowers).
likes(john,mary).
likes(paul,mary).

Question:
?- likes(john,X)

Answer:
X=flowers and wait
;   
mary
;
no



Conjunctions

■ Use ‘,’ and pronounce it as and.
■ Example

■ Facts:
■ likes(mary,food).
■ likes(mary,tea).
■ likes(john,tea).
■ likes(john,mary)

■ ?- 
■ likes(mary,X),likes(john,X).
■ Meaning is anything liked by Mary also liked by John?



Backtracking (an inherent property of 
prolog programming)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. First goal succeeds. X=food
2. Satisfy likes(john,food)



Backtracking (continued)
Returning to a marked place and trying to resatisfy is 

called Backtracking
likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. Second goal fails
2. Return to marked place
    and try to resatisfy the first goal



Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. First goal succeeds again, X=tea
2. Attempt to satisfy the likes(john,tea)



Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. Second goal also suceeds
2. Prolog notifies success and waits for a reply



Rules
■ Statements about objects and their 

relationships
■ Expess

■ If-then conditions
■ I use an umbrella if there is a rain
■  use(i, umbrella) :- occur(rain).

■ Generalizations
■ All men are mortal
■  mortal(X) :- man(X).

■ Definitions
■ An animal is a bird if it has feathers
■  bird(X) :- animal(X), has_feather(X).



Syntax

■ <head> :- <body>
■ Read ‘:-’ as ‘if’.
■ E.G.

■ likes(john,X) :- likes(X,cricket).
■ “John likes X if X likes cricket”.
■ i.e., “John likes anyone who likes cricket”.

■ Rules always end with ‘.’.



Another Example

sister_of (X,Y):- female (X),
    parents (X, M, F),
    parents (Y, M, F).

X is a sister of Y is
X is a female and
X and Y have same parents



Question Answering in presence 
of rules

■ Facts
■ male (ram).
■ male (shyam).
■ female (sita).
■ female (gita).
■ parents (shyam, gita, ram).
■ parents (sita, gita, ram).



Question Answering: Y/N type: is sita the 
sister of shyam?

female(sita)
parents(sita,M,F) parents(shyam,M,F)

parents(sita,gita,ram)
parents(shyam,gita,ram)

success

?- sister_of (sita, shyam)



Question Answering: wh-type: whose 
sister is sita?

female(sita)
parents(sita,M,F) parents(Y,M,F)

parents(sita,gita,ram)

parents(Y,gita,ram)

Success 
Y=shyam

parents(shyam,gita,ram)

?- ?- sister_of (sita, X)



Rules
■ Statements about objects and their 

relationships
■ Express

■ If-then conditions
■ I use an umbrella if there is a rain
■  use(i, umbrella) :- occur(rain).

■ Generalizations
■ All men are mortal
■  mortal(X) :- man(X).

■ Definitions
■ An animal is a bird if it has feathers
■  bird(X) :- animal(X), has_feather(X).



Support Vector Machine (SVM)



■ Support Vector Machine (SVM): Learns a linear separator for separating 
instances belonging to two different classes

■ In case of 1 dimensional instances, the separator is a point
■ In case of 2 dimensional instances, the separator is a line
■ In case of 3 dimensional instances, the separator is a plane
■ In case of instances in more than 3 dimensional space, the separator is a 

hyperplane

■ Given a set of linearly separable instances, there exist infinite number 
of linear separators which can separate the instances into 2 classes

■ SVM chooses that linear separator which has the maximum “margin”
■ Intuition: A linear separator with the maximum margin will generalize better for 

new unseen instances in test data

Introduction



■ An example of two 
dimensional instances

■ Two classes: 
■ Positive and Negative

■ Linearly separable data
■ Infinite number of linear 

separators are possible

SVM: Linear Separator



■ Goal: To find the linear 
separator which provides 
the maximum margin of 
separation between two 
classes

■ Support vectors: Instances 
which lie on the margin 
boundaries

SVM: Linear Separator

● Any other possible way to find hyperplanes?
● What are the issues?



The general form of a hyperplane in an n-dimensional space is given 
by:  

■ Can be expressed in a vector form as:                        or

Representation of a hyperplane

● The vector w is perpendicular to the 
hyperplane and b is the bias term (controls 
the offset of the hyperplane from the 
origin).

●

● If b=0, the hyperplane passes through the 
origin.

● If 𝑏 ≠ 0, the hyperplane is shifted away 
from the origin.



The general form of a hyperplane in an n-dimensional space is given 
by:  
■ Can be expressed in a vector form as:                        or

Representation of a hyperplane

0 1

-1

-2

(1,-1)
(2,-1)

• For a particular linear separator, 
any point      lying on the “positive” 
side will have positive value of                            

• Also, any point       lying on the 
“negative” side will have negative 
value of 

• E.g., the point (2,1.5) is on positive 
side of Line 2 (0.5) and on negative 
side of Line 1 (-0.5)

(2,1.5)

Line 2

Line 1



■ Training instances: 

■      is a point in n-dimensional         
space 

■                   its corresponding true 
class label 

■ Goal: To find optimal linear 
separator which maximizes the 
margin

■ All positive class points (+1 label) 
must be on or beyond the +1 
margin line.

■ All negative class points (-1 label) 
must be on or beyond the -1 
margin line.

SVM: Training
  

Positive 
Class

Margin 
width

Negative 
Class

● Since maximizing the margin is the core objective, adding an arbitrary scaling factor 
k is unnecessary because it cancels out in optimization.

● For +1 points:                     >= 1
● For -1 points:                       <= -1  



■ Consider two points       and       such 
that they lie on the opposite margins 
and the vector                  is 
perpendicular to the linear separator

■ The vector      is also perpendicular to 
the linear separator

■ margin = d = 

■ Therefore, by definition,  

Computing Margin Width

  

Positive 
Class

Margin 
width

Negative 
Class



■ Substituting

■ Margin width: 

Computing Margin Width
  

Positive 
Class

Margin 
width

Negative 
Class



■ Objective: 
■ Maximize the margin

■ Subject to the following constraints:
■ Every training instance should lie on 

the appropriate (positive / negative) 
side of the linear separator

SVM: Optimization Problem

  

Positive 
Class

Margin 
width

Negative 
Class



■ Objective: 
■ Maximize the margin and minimize 

the training error

■ Subject to the following constraints:
■ Introducing slack variables so that 

the constraint is satisfied for training 
instances lying on incorrect side

SVM: Soft-margin Formulation

  

Positive 
Class

Margin 
width

Negative 
Class

● High C  =>  Low 
● Low C  =>  High        —> This can allow for large outliers

● What happens if we remove                   ?



■ One Lagrange multiplier is associated with each distinct constraint

Optimization using Lagrange Multipliers



■ Differentiating w.r.t.

■ Differentiating w.r.t.

■ Differentiating w.r.t.   

Optimization using Lagrange Multipliers



■ Substituting optimal values:

Sum in the red 
circle is zero

Terms involving     
cancel each 
other out 
because 



■ Finally, we get:

■ Dual optimization problem:
■ Objective function:

■ Subject to the following constraints:

         Any Quadratic 
Programming 
Solver can be 
used for solving 
this

● Vary C and show its impact on decision boundary.



■ How to predict the class label for a new instance      given a trained 
SVM

■ Primal Form: 
■ Compute                            ; Positive value indicates the positive class and vice 

versa
■ E.g.,                                                                   be the learned parameters
■ For the new instance                        ,                                            and hence 

Negative class is predicted

■ Dual Form:
■ Compute

■ Positive value indicates the positive class and vice versa
■ Practically, most of the       values are zeros; non-zero only for support vectors

Using SVM for Predictions



Kernel Trick for SVM

● SVM works well with linearly separable data.
● But, many real-world data are non-linearly separable in nature
● The kernel function implicitly maps data into a higher-dimensional space 

where it becomes linearly separable.
● Instead of explicitly transforming data into a higher-dimensional space, we 

use a kernel function to compute the dot product in that space efficiently. 



Kernel Trick for SVM
Explicit Transformation: High Computational Cost

If we explicitly map data from a lower-dimensional space 𝑅𝑑  to a higher-dimensional 
space 𝑅𝐷  using a feature transformation 𝜙(𝑥), we need to compute the dot product 
in the new space.

Given 𝑛 training samples, each with 𝑑 features, transforming them explicitly to a 
higher dimension 𝐷 takes: 

𝑂(𝑛𝐷)
Then, computing the dot product between two transformed vectors 𝜙(𝑥𝑖) and 𝜙(𝑥𝑗) in 
𝑅𝐷  requires:

𝑂(𝐷)
Training SVM typically involves solving a quadratic programming problem, which has 
a complexity of:

𝑂(𝑛2𝐷)(in the worst case)

due to the need to compute pairwise dot products in the high-dimensional space.
If 𝐷 is very large (e.g., infinite in the case of the Radial Basis Function (RBF) kernel), 
the computation becomes impractical.



Kernel Trick for SVM
Kernel Function is the Saviour:  Avoids Curse of Dimensionality, Efficient 
Computation

The kernel function K(xi,xj)=⟨ϕ(xi),ϕ(xj)⟩ computes the dot product in high 
dimensional space in:          O(d)       because it only depends on the original 
d-dimensional data.

The SVM training complexity remains:     O(n2d)
instead of O(n2D), making it computationally feasible even when D is very large or 
infinite.



Kernel Trick for SVM

K(xi
 ,x

j
 )=xi

⊤ xj 

● Directly computes the dot product in O(d).
● No need for explicit mapping.

K(xi ,xj )=(xi
⊤ xj +c)p

● Requires computing xi
⊤xj (which takes O(d)) and then raising it to power p 

(which takes O(1)).
● Total complexity: O(d).



Kernel Trick for SVM

How the Kernel Trick Works in SVM?

1. Choose an appropriate kernel function based on the dataset.
2. Compute the kernel matrix K(xi, xj), which represents inner 

products in higher-dimensional space.
3. Use this matrix in the SVM optimization problem without explicitly 

transforming the data.
4. The SVM classifier finds the optimal hyperplane in the transformed 

space.



Advantage of Dual over Primal

Handles High-Dimensional Data Efficiently (Kernel Trick)

● The primal form works directly in the original feature space, making it 
impractical when the number of features (D) is large or infinite (e.g., in 
kernelized SVM).

● The dual form allows the use of the kernel trick, enabling SVMs to operate 
in an implicit high-dimensional space without explicitly transforming data.

Primal           Dual                      


