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Normalization
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Limitations of DB Design 
Processes

� Provides a set of guidelines, does not result in a unique 

database schema

� Does not provide a way of evaluating alternative 

schemas

� Pitfalls:

� Repetition of information

� Inability to represent certain information

� Loss of information

� Normalization theory provides a mechanism for 

analyzing and refining the schema produced by an E-R 

design
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Redundancy and Other 
Problems

� Dependencies between attributes cause redundancy

� Ex. All addresses in the same town have the same zip code

� Set valued attributes in the E-R diagram result in multiple rows 

in corresponding table

� Example: Person (PAN, Name, Address, Hobbies)

� A person entity with multiple hobbies yields multiple rows in 

table Person

� Hence, the association between Name and Address for the same person is 

stored redundantly

� PAN  is key of entity set, but (PAN, Hobby) is key of 

corresponding relation

� The relation Person can’t describe people without hobbies

4
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Redundancy leads to 
anomalies

� Update anomaly: A change in Address must be made 

in several places

� Deletion anomaly: Suppose a person gives up all 

hobbies. Do we:

� Set Hobby attribute to null? No, since Hobby is part of key

� Delete the entire row? No, since we lose other information in 

the row

� Insertion anomaly: Hobby value must be supplied for 

any inserted row since Hobby is part of key

6

Solution: Decomposition 

� Solution: use two relations to store Person information

Person1 (PAN, Name, Address)

Hobbies (PAN, Hobby)

� The decomposition is more general: people with 

hobbies can now be described

� No update anomalies:

� Name and address stored once

� A hobby can be separately supplied or deleted
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Normalization

� Result of E-R analysis need further refinement

� Appropriate decomposition can solve problems

� The underlying theory is referred to as normalization 

theory and is based on functional dependencies (and 

other kinds, like multivalued dependencies)

8

Example

� Hourly_Emps (pan, name, lot, rating, hrly_wages, hrs_worked)

� Some functional dependencies on Hourly_Emps:

� pan is the key: P -> PNLRWH

� rating determines hrly_wages: R -> W

Are there anomalies?
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Functional Dependencies

� Definition: A functional dependency (FD) on a relation 

schema R is a constraint X → Y, where X and Y are 

subsets of attributes of R.

� Definition: An FD X → Y is satisfied in an instance r 

of R if for every pair of tuples, t and s: if t and s agree 

on all attributes in X then they must agree on all 

attributes in Y.

� formally: πX(t) = πX(s) ⇒ πy(t) = πy(s) where 

(πX(t) is the projection of tuple t onto the attributes X)
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FDs

� Definition: A constraint on a relation schema R is a condition 

that has to be satisfied in every allowable instance of R.

� FDs must be identified based on semantics of application.

� Given a particular allowable instance r1 of R, we can check if it 

violates some FD f, but we cannot tell if f holds over the schema 

R!

� A key constraint is a special kind of functional dependency: all

attributes of relation occur on the right-hand side of the FD:

� PAN → PAN, Name, Address
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More examples

� Address → ZipCode

� Powai zip is 400076

� ArtistName → BirthYear

� Picasso was born in 1881

� VIN → Manufacturer, Engine type, …

� VIN (vehicle information number) encodes all the 
information about manufacturer etc

� Author, Title → PublDate

� Shakespeare’s Hamlet published in 1600
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Example from Specifications

� Brokerage firm allows multiple clients to share an 
account, but each account is managed from a single 
office and a client can have no more than one account 
in an office

� HasAccount (AcctNum, ClientId, OfficeId)

� Keys are (ClientId, OfficeId), (AcctNum, ClientId)

� ClientId, OfficeId → AcctNum

� AcctNum → OfficeId

� Thus, attribute values need not depend only on key 
values
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Entailment, Closure and 
Equivalence

� Definition: If F is a set of FDs on schema R and f is another FD 

on R, then F entails f if every instance r of R that satisfies every 

FD in F also satisfies f

� Ex: F = {A → B, B→ C} and f is A → C

� If Streetaddr → Town and Town → Zip then Streetaddr → Zip

� Aka “Follows from”

� Definition: The closure of F, denoted F+, is the set of all FDs

entailed by F

� Definition: F and G are equivalent if F entails G and G entails F

14

� Satisfaction, entailment, and equivalence are semantic concepts –
defined in terms of the actual relations in the “real world.”

� They define what these notions are, not how to compute them

� How to check if F entails f or if F and G are equivalent?

� Apply the respective definitions for all possible relations?

� Bad idea: might be infinite in number for infinite domains

� Even for finite domains, we have to look at relations of all arities

� Solution: find algorithmic, syntactic ways to compute these 
notions

� Important: The syntactic solution must be “correct” with respect 
to the semantic definitions

� Correctness has two aspects: soundness and completeness
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Armstong’s Axioms for FDs

� This is the syntactic way of computing/testing the 

various properties of FDs

� Reflexivity: If Y ⊆ X then X → Y (trivial FD)

� Name, Address → Name

� Augmentation: If X → Y then X Z→ YZ

� If Town → Zip then Town, Name → Zip, Name

� Transitivity: If X → Y and Y → Z then X → Z

16

More rules

� Two more rules (which can be derived from the 

axioms) can be useful:

� Union: If X →Y and X → Z then X → YZ

� Decomposition: If X → YZ then X → Y and X → Z

� And of course transitivity
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Soundness and Completeness

� Axioms are sound: If an FD f: X→ Y can be derived 

from a set of FDs F using the axioms, then f holds in 

every relation that satisfies every FD in F.

� Axioms are complete: If F entails f , then f can be 

derived from F using the axioms

� A consequence of completeness is the following (naïve) 

algorithm to determining if F entails f:

� Algorithm: Use the axioms in all possible ways to 

generate F+ (the set of possible FD’s is finite so this 

can be done) and see if f is in F+
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Reflexivity

� If Y ⊆ X, then X -> Y

� Let R=(A,B,C,D,E), X = {ABCD}, Y={CD}

� e.g.:

� t1 =(a1,b1,c1,d1,e1)

� t2 =(a2,b2,c2,d2,e2)

� πX(t1)= πX(t2) a1 = a2,b1 = b2, c1 = c2,d1 = d2

� => πY(t1)= πY(t2)
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Augmentation

� If X -> Y, then XZ -> YZ for any Z

� Let R=(A,B,C,D,E), X={AB} Y={CD} Z={E}

� e.g.:

� t1 =(a1,b1,c1,d1,e1)

� t2 =(a2,b2,c2,d2,e2)

� πXZ(t1)= πXZ(t2) => a1 = a2, b1 = b2, e1 = e2

� Since X ->Y and e1 = e2

� then c1 = c2, d1 = d2, e1 = e2

� => πYZ(t1)= πYZ(t2)

20

Transitivity

� If X -> Y, and Y -> Z then X -> Z

� Let R = (A,B,C,D,E), X={AB}, Y={CD} X={E}

� e.g.:

� t1 =(a1,b1,c1,d1,e1)

� t2 =(a2,b2,c2,d2,e2)

� assume X ->Y and Y -> Z

� πX(t1)= πX(t2)  => a1 = a2,b1 = b2

� Since X -> Y then c1 = c2 ,d1 = d2

� => πY(t1)= πY(t2)

� Since Y -> Y then e1 = e2

� => πZ(t1)= πZ(t2)
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Generating F+

� Thus, AB→ BD, AB → BCD, AB → BCDE, and AB 

→ CDE are all elements of F+

22

Attribute Closure

� Calculating attribute closure leads to a more efficient 

way of checking entailment

� The attribute closure of a set of attributes, X, with 

respect to a set of functional dependencies, F, (denoted 

X+ F) is the set of all attributes, A, such that (X → A) 

∈F+, i.e., X+ F ={A|(X → A) ∈ F+}

� X + F1 is not necessarily the same as X +F2 if F1 ≠ F2

� Attribute closure and entailment:

� Algorithm: Given a set of FDs, F, then (X → Y) ∈ F+ 

if and only if X+ F ⊇ Y
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Example

� F: AB →C,  A → D, D → E, AC → B

X  X+F

A {A, D, E}

AB {A, B, C, D, E}

(Hence AB is a key)

B {B}

D {D, E}

� Is AB → E entailed by F? Yes

� Is D→ C entailed by F? No

� => X+F allows us to determine FDs of the form X → Y 

entailed by F

24

Computation of XF+

closure := X; // since X ⊆ X+F

repeat

old := closure;

if there is an FD Z → V in F such that Z ⊆ closure 

and V ⊆ closure

then closure := closure ∪ V

until old = closure

� If T ⊆ closure then X → T is entailed by F
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Example

� Problem: Compute the attribute closure of AB with 

respect to the set of FDs :

� AB →C ---- (a)

� A →D ----- (b)

� D →E ------ (c)

� AC →B ------ (d)

� Initially closure = {AB}

� Using (a) closure = {ABC}

� Using (b) closure = {ABCD}

� Using (c) closure = {ABCDE}

26

Normalization

� Each normal form is a set of conditions on a schema that 
guarantees certain properties (relating to redundancy and update
anomalies)

� First normal form (1NF) is the same as the definition of 
relational model (relations = sets of tuples; each tuple = sequence 
of atomic values)

� Second normal form (2NF): no non-key attribute is dependent on 
part of a key; has no practical or theoretical value – won’t 
discuss in detail

� The two commonly used normal forms are third normal form
(3NF) and Boyce-Codd normal form (BCNF)
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BCNF

� Definition: A relation schema R is in BCNF if for 

every FD X→ Y associated with R either 

1. Y ⊆ X (i.e., the FD is trivial) or

2. X is a superkey of R

� Example: Person1(PAN, Name, Address)

� The only FD is PAN → Name, Address

� Since PAN is a key, Person1 is in BCNF

28

More examples

� Person (PAN, Name, Address, Hobby)

� The FD PAN → Name, Address does not satisfy 

requirements of BCNF since the key is (PAN, Hobby)

� HasAccount (AccountNumber, ClientId, OfficeId)

� The FD AcctNum→ OfficeId does not satisfy BCNF

� Requirements  since keys are (ClientId, OfficeId) and 

(AcctNum, ClientId)
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BCNF and Redundancy

� Suppose R has a FD A → B. If an instance has 2 rows 

with same value in A, they must also have same value 

in B (=> redundancy, if the A-value repeats twice)

� If A is a superkey, there cannot be two rows with same 

value of A – Hence, BCNF eliminates redundancy

30

Decompositions

� Goal: Eliminate redundancy by decomposing a relation 

into several relations in a higher normal form

� Decomposition must be lossless: it must be possible to 

reconstruct the original relation from the relations in the 

decomposition

� We will see why
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Decompositions

� Schema R = (R, F)

� R is set a of attributes

� F is a set of functional dependencies over R

� The decomposition of schema R is a collection of 
schemas Ri = (Ri, Fi) where

� R = ∪i Ri (no new attributes)

� Fi is a set of functional dependences involving only attributes 
of Ri

� F entails Fi for all i (no new FDs)

� The decomposition of an instance, r, of R is a set of 
relations ri = πRi(r) for all i

32

Example

� Schema (R, F) where

� R = {PAN, Name, Address, Hobby}

� F = {PAN→ Name, Address}

� can be decomposed into

� R1 = {PAN, Name, Address}

� F1 = {PAN → Name, Address}

� and

� R2 = {PAN, Hobby}

� F2 = { }
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Decomposition into BCNF

� Consider relation R with FDs F.

� If X -> Y violates BCNF (and X ∩ Y = ∅), decompose 
R into XY and R - Y.

� Repeated application of this idea will give us a 
collection of relations that are in BCNF and guaranteed 
to terminate.

� e.g., CSJDPQV, key C, JP->C, SD->P, J->S

� To deal with SD -> P, decompose into SDP, CSJDQV.

� To deal with J -> S, decompose CSJDQV into JS and

CJDQV

� In general, several dependencies may cause violation of 
BCNF. 

34

Lossless Decomposition

� A decomposition should not lose information

� A decomposition (R1,…,Rn) of a schema, R, is lossless

if every valid instance, r, of R can be reconstructed 

from its components:

r = r1  ∞ r2 …… ∞ rn

� where each ri = πRi(r)
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Lossy Decomposition

� The following is always the case (Think why?):

r ⊆ r1 ∝ r2 ... ∝ rn

� But the following is not always true:

r ⊇ r1 ∝ r2 ... ∝ rn

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) 

are in the join, but not in the original

36

Why do we term it Lossy?

� In the previous example, the tuples (2222, Alice, 3 

Pine) and (3333, Alice, 2 Oak) were gained, not lost!

� Why do we say that the decomposition was lossy?

� What was lost is information:

� That 2222 lives at 2 Oak: In the decomposition, 2222 

can live at either 2 Oak or 3 Pine

� That 3333 lives at 3 Pine: In the decomposition, 3333 

can live at either 2 Oak or 3 Pine
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Testing for LosslePANess

� A (binary) decomposition of R = (R, F) into R1 = (R1, 

F1) and R2 = (R2, F2) is lossless if and only if :

� either the FD  (R1 ∩ R2 ) → R1 is in F+

� or the FD       (R1 ∩ R2 ) → R2 is in F+

� Intuitively: the attributes common to R1 and R2 must 

contain a key for either R1 or R2.

38

Example

� Schema (R, F) where R = {PAN, Name, Address, 

Hobby}, F = {PAN → Name, Address} can be 

decomposed into

� R1 = {PAN, Name, Address}, F1 = {PAN → Name, 

Address} & 

� R2 = {PAN, Hobby},  F2 = { }

� Since R1 ∩ R2 = PAN and PAN → R1 the 

decomposition is lossless
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The intuition behind this

� Suppose R1 ∩ R2 → R2 . Then a row of r1 can 

combine with exactly one row of r2 in the natural join 

(since in r2 a particular set of values for the attributes 

in R1 ∩ R2 defines a unique row)

40

Dependency Preservation

� Consider a decomposition of R = (R, F) into R1 = (R1, F1) and 

R2 = (R2, F2)

� An FD X → Y of F is in Fi iff X ∪ Y ⊆ Ri

� An FD, f ∈F may be in neither F1, nor F2, nor even (F1 ∪ 
F2)+

� Checking that f is true in r1 or r2 is (relatively) easy

� Checking f in r1 ∝ r2 is harder – requires a join

� Ideally: want to check FDs locally, in r1 and r2, and have a 

guarantee that every f ∈F holds in r1 ∝ r2

� The decomposition is dependency preserving iff the sets F and 

F1 ∪ F2 are equivalent: F+ = (F1 ∪ F2)+

� Then checking all FDs in F, as r1 and r2 are updated, can be 

done by checking F1 in r1 and F2 in r2
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� If f is an FD in F, but f is not in F1 ∪ F2, there are 

two possibilities:

1. f ∈ (F1 ∪ F2)+

� If the constraints in F1 and F2 are maintained, f will 

be maintained automatically.

2. f∉ (F1 ∪ F2)+

� f can be checked only by first taking the join of r1 and 

r2. This is costly.

42

Example

� Schema (R, F) where R = {SSN, Name, Address, 

Hobby} & F = {SSN → Name, Address} can be 

decomposed into

� R1 = {SSN, Name, Address}, F1 = {SSN → Name, 

Address} & 

� R2 = {SSN, Hobby}, F2 = { }

� Since F = F1 ∪ F2 , it trivially holds that F+ = (F1 

∪ F2)+  i.e., the decomposition is dependency 

preserving
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Example

� Schema: (ABC; F) , F = {A -> B, B-> C, C->B}

� Decomposition:

1. (AC, F1), F1 = {A->C}

� Note: A->C ∉ F, but in F+

2. (BC, F2), F2 = {B-> C, C-> B}

� A -> B ∉ (F1 ∪ F2), but A -> B ∈ (F1 ∪ F2)+.

� So F+ = (F1 ∪ F2)+ and thus the decompositions is 

still dependency preserving
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Example

� HasAccount (AccountNumber, ClientId, OfficeId)

� f1: AccountNumber → OfficeId

� f2: ClientId, OfficeId → AccountNumber

� Decomposition:

� AcctOffice = (AccountNumber, OfficeId; {AccountNumber → OfficeId})

� AcctClient = (AccountNumber, ClientId; {})

� Decomposition is lossless: R1∩ R2= {AccountNumber} & 
AccountNumber → OfficeId

� In BCNF

� Not dependency preserving: f2 ∉ (F1 ∪ F2)+

� HasAccount does not have BCNF decompositions that are both
lossless and dependency preserving! (Check, eg, by enumeration)

� Hence: BCNF+lossless+dependency preserving decompositions are 
not always possible!
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BCNF Decomposition Algo

Input: R = (R; F)

Decomp := R

while there is S = (S; F’) ∈ Decomp and S not in BCNF do

Find X → Y ∈ F’ that violates BCNF // X isn’t a superkey in S

Replace S in Decomp with S1 = (XY; F1), S2 = (S - (Y - X); F2)

// F1 = all FDs of F’ involving only attributes of XY

// F2 = all FDs of F’ involving only attributes of S - (Y - X)

end

return Decomp

46

Example

� Given: R = (R; T) where R = ABCDEFGH and T = {ABH→ C, A→ DE, 

BGH→ F, F→ ADH, BH→ GE}

� step 1: Find a FD that violates BCNF

Not ABH → C since (ABH)+ includes all attributes (BH is a key)

A → DE violates BCNF since A is not a superkey (A+ =ADE)

� step 2: Split R into:

R1 = (ADE, {A→ DE })

R2 = (ABCFGH; {ABH→ C, BGH→ F, F→ AH , BH→ G})

Note 1: R1 is in BCNF

Note 2: Decomposition is lossless since A is a key of R1.

Note 3: FDs F → D and BH → E are not in T1 or T2. But both can be 

derived from T1∪ T2

(E.g., F→ A and A→ D implies F→ D)

Hence, decomposition is dependency preserving.
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Properties of algorithm

� Let X → Y violate BCNF in R = (R,F) and R1 = (R1,F1), R2 = 

(R2,F2) is the resulting decomposition. Then:

� There are fewer violations of BCNF in R1 and R2 than there 

were in R

� X → Y implies X is a key of R1

� Hence X → Y ∈ F1 does not violate BCNF in R1 and, since

� X → Y ∉F2, does not violate BCNF in R2 either

� Suppose f is X’ → Y’ and f ∈ F doesn’t violate BCNF in R.

� If f ∈ F1 or F2 it does not violate BCNF in R1 or R2 either 

since X’ is a superkey of R and hence also of R1 and R2 .

� The decomposition is lossless since F1 ∩ F2 = X

48

Example (contd)

� Given: R2 = (ABCFGH; {ABH→C, BGH→F, F→AH, 
BH→G})

� step 1: Find a FD that violates BCNF.

Not ABH → C or BGH → F, since BH is a key of R2

F→ AH violates BCNF since F is not a superkey (F+ =AH)

� step 2: Split R2 into:

R21 = (FAH, {F → AH})

R22 = (BCFG; {})

Note 1: Both R21 and R22 are in BCNF.

Note 2: The decomposition is lossless (since F is a key of R21)

Note 3: FDs ABH→ C, BGH→ F, BH→ G are not in T21 or 
T22 , and they can’t be derived from T1 ∪ T21 ∪ T22 .

� Hence the decomposition is not dependency-preserving
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More properties

� A BCNF decomposition is not necessarily dependency 

preserving

� But always lossless

� BCNF+lossless+dependency preserving is sometimes 

unachievable (recall HasAccount)

50

Third NF

� A relational schema R is in 3NF if for every FD X→ 
Y associated with R either

1. Y ⊆ X (i.e., the FD is trivial) OR

2. X is a superkey of R OR

3. Every A∈ Y is part of some key of R

� 3NF is weaker than BCNF (every schema in BCNF is 

also in 3NF)

BCNF Cond.
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Example

� HasAccount (AcctNum, ClientId, OfficeId)

� ClientId, OfficeId → AcctNum

� OK since LHS contains a key

� AcctNum → OfficeId

� OK since RHS is part of a key

� HasAccount is in 3NF but it might still contain 

redundant information due to AcctNum → OfficeId

(which is not allowed by BCNF)

52

3NF Example

HasAccount might store redundant data:
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Another Example

� Person (SSN, Name, Address, Hobby)

� (SSN, Hobby) is the only key.

� SSN→ Name violates 3NF conditions since Name is 

not part of a key and SSN is not a superkey

54

Third Normal Form

� Compromise – Not all redundancy removed, but 

dependency preserving decompositions are always 

possible (and, of course, lossless)

� 3NF decomposition is based on a minimal cover
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Minimal Cover

� A minimal cover of a set of dependencies, T, is a set 

of dependencies, U, such that:

1. U is equivalent to T (T+ = U+)

2. All FDs in U have the form X → A where A is a 

single attribute

3. It is not possible to make U smaller (while preserving 

equivalence) by

� Deleting an FD OR

� Deleting an attribute from an FD (either from LHS or RHS)

� FDs and attributes that can be deleted in this way are 

called redundant

56

Finding the minimal cover

� Example:

R = (R, T), R = (A, B, C, D, E, F, G, H, K)

T = {ABH → CK, A → D, C → E, BGH → F, F → 
AD, E → F, BH → E}

� Step 1: Make RHS of each FD into a single attribute

Algorithm: Use the decomposition inference rule 

for FDs

Example: F → AD replaced by F → A, F → D ; 

ABH →CK by ABH →C, ABH →K
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� step 2: Eliminate redundant attributes from LHS.

Algorithm: If FD XB → A ∈ T (where B is a single 

attribute) and X → A is entailed by T, then B was 

unnecessary

� Example: Can an attribute be deleted from ABH → C ?

� Compute AB+ T, AH+ T, BH+T.

� Since C ∈ (BH)+T , BH → C is entailed by T and A is 

redundant in ABH → C.

58

� step 3: Delete redundant FDs from T

Algorithm: If T - {f} entails f, then f is redundant

If f is X → A then check if A ∈ X+T-{f}

Example: BH → F is entailed by E → F, BH → 
E, so it is redundant

� Note: Steps 2 and 3 cannot be reversed!!
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Synthesizing 3NF Schemas

Starting with a schema R = (R, T)

step 1: Compute a minimal cover, U, of T. The 

decomposition is based on U, but since U+ = T+ the 

same functional dependencies will hold

A minimal cover for T={ABH→CK, A→D, C→E, 

BGH→F, F→AD, E→ F, BH → E}

is

U={BH→C, BH→K, A→D, C→E, F→A, E→F}

60

step 2: Partition U into sets U1, U2, … Un such that the 

LHS of all elements of Ui are the same

U1 = {BH → C, BH → K}, 

U2 = {A → D},

U3 = {C → E}, 

U4 = {F → A}, 

U5 = {E → F}
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step 3: For each Ui form schema Ri = (Ri, Ui), where Ri

is the set of all attributes mentioned in Ui

Each FD of U will be in some Ri. Hence the 

decomposition is dependency preserving

R1 = (BHCK; BH → C, BH → K),

R2 = (AD; A → D),

R3 = (CE; C → E),

R4 = (FA; F → A),

R5 = (EF; E → F)

62

step 4: If no Ri is a superkey of R, add schema R0 = (R0,{}) where 

R0 is a key of R.

R0 = (BGH, {})

R0 might be needed when not all attributes are necessarily contained in 

R1∪R2 …∪Rn

A missing attribute, A, must be part of all keys (since it’s not in any FD of 

U, deriving a key constraint from U involves the augmentation axiom)

R0 might be needed even if all attributes are accounted for in R1∪R2 

…∪Rn

Example: (ABCD; {A->B, C->D}). Step 3 decomposition: R1 = (AB; {A-

>B}), R2 = (CD; {C->D}). Lossy! Need to add (AC; { }), for

losslessness

� Step 4 guarantees lossless decomposition.
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BCNF Design Strategy

� The resulting decomposition, R0, R1, … Rn , is

1. Dependency preserving (since every FD in U is a FD 
of some schema)

2. Lossless (although this is not obvious)

3. In 3NF (although this is not obvious)

� Strategy for decomposing a relation

1. Use 3NF decomposition first to get lossless, 
dependency preserving decomposition

2. If any resulting schema is not in BCNF, split it using 
the BCNF algorithm (but this may yield a non-
dependency preserving result)

64

Limitations

� By limiting redundancy, normalization helps maintain 
consistency and saves space

� But performance of querying can suffer because related 
information that was stored in a single relation is now distributed 
among several

Student = (Id, Name, Address, Status)

Transcript = (StudId, CrsCode, SectionNo, 

Semester, Year, Grade)

� Example: A join is required to get the names and grades of all 
students taking CS317 in F2007.

SELECT S.Name, T.Grade

FROM Student S, Transcript T

WHERE S.Id = T.StudId AND

T.CrsCode = ‘CS317’ AND T.Semester = ‘F2007’
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Denormalization

� Tradeoff: Judiciously introduce redundancy to improve 

performance of certain queries

� Example: Add attribute Name to Transcript (making it 

Transcript’ )

SELECT T.Name, T.Grade

FROM Transcript’ T

WHERE T.CrsCode = ‘CS317’ AND T.Semester = ‘F2007’

� Join is avoided

� If queries are asked more frequently than Transcript is modified, 

added redundancy might improve average performance

� But, Transcript’ is no longer in BCNF since key is (StudId,

CrsCode, Semester) and StudId → Name
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Attribute Independence in 
BCNF

� BCNF schemas can have 

redundancy, e.g., when we 

force two or more many-

many relationships in a single 

relation.

� Consider the schema 

Courses(Number, DeptName, 

Textbook, Instructor).

� Each Course can have multiple 

required Textbooks.

� Each Course can have multiple 

Instructors.

� Instructors can use any required 

textbook in a Course.
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� Is the relation in BCNF? 

� Yes, there are NO non trivial FDs.

� Is there redundancy?

� Yes – in the TextBook and Instructor 
attributes.

� We can remove the redundancy by decomposing 

Courses into

Courses1(Number, DeptName, Textbook)

Courses2(Number, DeptName, Instructor)

68

� FDs and BCNF are not rich enough to 
express these types of redundancies.
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MVD

� A multi-valued dependency (MVD or MD) is 
an assertion that two sets of attributes are 
independent of each other.

� The multi-valued dependency A1 A2 . . .An 
->> B1 B2 . . .Bm holds in a relation R if 
for every pair of tuples t and u in R that 
agree on all the A’s, we can find a tuple v 
in R that agrees

1. with both t and u on A’s,

2. with t on the B’s, and

3. with u on all those attributes of R that are 
not A’s or B’s.

70
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Example

� Number DeptName  ->>Textbook is an MD. For 

every pair of tuples t and u that agree on Number 
and DeptName, we can find a tuple v that agrees

1. with both t and u on Number and DeptName,

2. with t on Textbook, and with u on Instructor.

� Number DeptName ->> Instructor is an MD. For 

every pair of tuples t and u that agree on Number 
and DeptName, we can find a tuple v that agrees

1. with both t and u on Number and DeptName,

2. with t on Instructor, and with u on Textbook.
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Facts about MDs

� Given tuples t, u, and v that satisfy an MD, 
we can infer the existence of another tuple
w that agrees

1. with both t and u on A’s,

2. with u on the B’s, and

3. with t on all those attributes of R that are 
not A’s or B’s.

� Every FD A -> B is an MD A ->> B. 

� Proof: make u and v the same tuple.

� Definition of keys depends on FDs and not 
on MDs.
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MD Manipulation Rules

� Trivial dependencies rule: If A->> B is an 
MD, then A ->> AB is also an MD.

� Transitive rule: if A ->>  B and B ->>  C 
are MDs, then A ->> C is an MD.

� Complementation rule: if A ->> B, then A -
>> C is an MD, where C is the set of all 
attributes not in the MD.

� The splitting rule does not hold! If A ->> BC 
is an MD, then it is not true that A ->> B 
and A ->> C are MDs.
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Triviality

� An MD A1 A2 . . .An ->> B1 B2 . . .Bm for a 

relation R is non-trivial if

1. {A1,A2,...,An}∩∩∩∩{B1,B2,...,Bm} =  ΦΦΦΦ;

i.e.,  none of the B’s is an A AND

2. {A1,A2,...,An} ∪∪∪∪{B1,B2,...,Bm} is not 

the set of all the attributes of R.
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Fourth Normal Form

� A relation R is in fourth normal form (4NF) if for every 

non-trivial MD A1 A2 . . .An ->> B1B2 . . .Bm, 

{A1,A2, . . . ,An} is a superkey.

� A relation in 4NF is also in BCNF since an FD is a 

special case of an MD.
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Decomposition into 4NF

� Suppose R is a relation with a set X of attributes and 
A1A2 . . .An ->>  B1B2 . . .Bm violates 4NF.

1. Decompose R into two relations whose attributes are 
the As and the Bs, i.e., {A1,A2, . . . ,An,B1,B2, . . . 
,Bm} and

2. all the attributes of R that are not B’s, i.e., X − {B1,B2, 
. . . ,Bm}.

3. Check if the new relations are in 4NF.

� Projecting MDs: out of the scope of 317. In practice, 
we can use rules for manipulating MDs to project them.

� Date-Fagin theorem: if a relation schema is in BCNF 
and has a key with one attribute, then it is in 4NF.
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Relationships amongst Normal 
Forms

� 4NF implies BCNF, i.e., if a relation is in 
4NF, it is also in BCNF.

� BCNF implies 3NF, i.e., if a relation is in 
BCNF, it is also in 3NF.
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Kth NF

� First Normal Form: each attribute is atomic.

� Second Normal Form: No non-trivial FD has 
a left side that is a proper subset of a key.

� Third Normal Form: we just discussed it.

� Fourth Normal Form: we just discussed it.

� Fifth Normal Form: outside the scope of 
317.

� Sixth Normal Form: different versions exist. 
One version is newly developed for 
temporal databases.

� Seventh Normal Form: your ticket to fame 
and fortune.


