-
CA)
N

Query Evaluation

m Problem: An SQL query is declarative —does
not specify a query execution plan.

m A relational algebra expression is procedural
m there is an associated query execution plan.

m Solution:Convert SQL query to an equivalent
relational algebra and evaluate it using the
associated query execution plan.

m But which equivalent expression is best?

m Select Distinct targetlist from
R1,...,Rn Where condition

Is equivalent to:

nTm’gethSf (G(_"ondirion (I{1 x R2 x ... x RN))

Example

T Name (GId=Prc_'ﬂa’ A CrsCode=°CS532" (PI.OtESSOI‘ X TeﬂChlllg))

e Result can be < 100 bytes

e But if each Relation is 50k then we end up
computing an intermediate result Professor x
Teaching that is over 1G

Problem: Find an equivalent relational algebra expression that can
be evaluated “efficiently”.

SQL Query

o o e e e e SQL Parser
Y
Relational Algebra Expression \\\
Query Optimizer N
g L 1 System
€ \Query Plan;| Cost | <€------ > Catalog
\ Generator | | Estimator |
ARG IR o4
r
Query Execution Plan o
i,f’
f”
e Query Plan 4
Interpreter
Y
Query Result

Query Optimizer

m Uses heuristic algorithms to evaluate relational
algebra expressions. This involves:
m estimating the cost of a relational algebra expression

m transforming one relational algebra expression to an
equivalent one

m choosing access paths for evaluating the subexpressions

m Query optimizers do not “optimize”— just try to find
“reasonably good”evaluation strategies

Equivalence Preserving
Transformation

m To transform a relational expression into
another equivalent expression we need
transformation rules that preserve equivalence

m Each transformation rule
m [s provably correct (ie, does preserve equivalence)

m Has a heuristic associated with it

Selection and Projection Rules

m Break complex selection into simpler ones:

mo Cond]ACondZ(R) = cSC(JnaU(GC(de(l{))

m Break projection into stages:
mIl, R =¢,, (T, R)Iatr<attr’

attr attr’'

m Commute projection and selection:
m]I attr (G Cond (R)) =0 Cond (ﬂ: attr (R))’

m if artr 2all
attributes in
Cond

Commutativity, Associativity of Joins

m Join commutativity: R o« S=S o« R
m Used to reduce cost of nested loop evaluation strategies
(smaller relation should be in outer loop)

m Join associativity: Roc (S< T) =(R o< S) o< T
m used to reduce the size of intermediate relations in
computation of multi-relational join
m first compute the join that yields smaller intermediate
result
m N-way join has T(N)xN! different evaluation plans—
m 7(N)is the number of parenthesized expressions
m N!is the number of permutations
m Query optimizer cannot look at all plans Hence it
does not necessarily produce optimal plan

Pushing Selections and Projections

u csCond(l{ XS) ER o< Conds
m Cond relates attributes of both R and S

m Reduces size of intermediate relation since rows can be
discarded sooner

m 6., (R xS) =0, (R) XS
m Cond involves only the attributes of R

m Reduces size of intermediate relation since rows of R are
discarded sooner

u nattr(RXS) Eﬂ:attr(ﬂ: attr’ (R) XS)’
m if artributes(R) 2attr' 2attr
m reduces the size of an operand of product

10

Equivalence Example

G ¢1 nc2 Az (RXS)
=60,(0(0¢3(RXS)))
=6.,(6»(R) X6-5(S))
=65(R) o< ¢,605(S)

Assuming C1 involves attributes of R and S, C2
involves only R and C3 involves only S.

11

Query Tree

T
Tree structure that corresponds to a Syname

relational algebra expression:

. . (&) - A i
—A leaf node represents an input relation; R.type=100] S.rating > 5

—An internal node represents a relation
obtained by applying one relational

operator to its child nodes Rilvc.-ihs's'd
—The root relation represents the answer to R S
the query
. . . SELECT DISTINCT S.sname
—Two query trees are equivalent if their FROM R.S
root relations are the same WHERE R.id = S.sid

AND R. type =100
AND S.rating > 5

Left Deep Tree: right child of a join is
always a base relation \
TS sname (~GR.!}_-"p. =100 A S.rating > 5 (R R.i'Ei:g:]sid S)) ‘

Query Plan

Query Tree with specification of

algorithms for each operation.
T name (On-the-fly)

—A query tree may have different
execution plans

o OR.type=100/\ S.rating >5 (On-the-fly)
—Some plans are more efficient to
execute than others.
*Two main issues: Rid=S.sid (Block-Nested-Loop

PN Join)
. T

—For a given query, what plans are R s
considered? t

—How is the cost of a plan estimated?

e[deally: want to find best plan.

Practically: avoid worst plans! left child: “outer” relation
right child: “inner” relation

1o

Cost - Example 1

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.Profld -- join condition
AND P. Deptld = ‘CS’ AND T.Semester = ‘F2007’

T Name(O-DeptId: ‘CS’ A Semester= ‘F2007’(Pr0fessor N 1d=Profld TeaChlng))

L8

e) Name
Master query : ‘

execution plan
. (nothing pushed) .
) ’ GDeptId: ‘CS’A Semester=F2007’

— N ld=Profld

Professor Teaching
14

Metadata on Tables (in system
catalogue)

m Professor (Id, Name, DeptId)
e size: 200 pages, 1000 rows, 50 departments
o ilzidexes: clustered, 2-level B*+tree on Deptld, hash on
I
m Teaching (Profld, CrsCode, Semester)
e size: 1000 pages, 10,000 rows, 4 semesters
e jndexes: clustered, 2-level B*tree on Semester;
hash on Profld

m Definition: Weight of an attribute - average
number of rows that have a particular value
e weight of Id = 1 (it is a key)
e weight of Prof Id = 10 (10,000 classes/1000
professors)

15

Estimating Cost - Example

m Join - block-nested loops with 51 page buffer

m Scanning Professor (outer loop): 200 page
transfers, (4 iterations, 50 transfers each)

m Finding matching rows in Teaching (inner loop):
1000 page transfers for each iteration of outer
loop

e 250 professors in each 50 page chunk * 10 matching

Teaching tuples per professor = 2500 tuple fetches =
2500 page transfers for Teaching (Why?)

¢ By sorting the record Ids of these tuples we can get away
with only 1000 page transfers (Why?)

m total cost = 200+4*1000 = 4200 page transfers

16

Estimating Cost - Example

m Selection and projection — scan rows of
intermediate file, discard those that don'’t
satisfy selection, project on those that do,
write result when output buffer is full.

m Complete algorithm:
m do join, write result to intermediate file on disk

m read intermediate file, do select/project, write
final result

m Problem: unnecessary I/O

17

Pipelining

m Solution: use pipelining:
m join and select/project act as co-routines,
operate as producer/consumer sharing a buffer in
main memory.

e When join fills buffer; select/project filters it and
outputs result

e Process is repeated until select/project has processed
last output from join

m Performing select/project adds no additional cost

.. Intermediate . . output
join W select/project final result

Estimating Cost - Example 1

m Total cost:

4200 + (cost of outputting final
result)

m We will disregard the cost of
outputting final result in comparing

with other query evaluation strategies,
since this will be same for all

19

Cost Example 2

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.Profld AND

P. Deptld = ‘CS’ AND T.Semester = ‘F2007°

EName(O-Semester= ‘F1994° (GDepIId= ‘cS’ (PI'OfCS SOI') N Id=Profld Teaching))

T Name
Partially lpushed -
plan: selection o.
pushed to Professor Semester=F2007’
N~ [jld:Proﬂd
ODeptid="CS’ \
Professor Teaching

20

10

Cost Example 2 -- selection

m Compute opepe-csr (Professor) (to reduce size of one
join table) using clustered, 2-level B* tree on DeptId.

m 50 departments and 1000 professors; hence weight
of Deptld is 20 (roughly 20 CS professors). These
rows are in ~4 consecutive pages in Professor.

e Cost = 4 (to get rows) + 2 (to search index) = 6

e keep resulting 4 pages in memory and pipe to next
step

clustered index
on Deptld

rows of
Professor

21

Cost Example 2 -- join

m Index-nested loops join using hash index on Profld
of Teaching and looping on the selected professors
(computed on previous slide)

m Since selection on Semester was not pushed, hash
index on Profld of Teaching can be used

m Note: if selection on Semester were pushed, the
index on Profld would have been lost — an
advantage of not using a fully pushed query
execution plan

22

11

Cost Example 2 - join (cont’d)

m Each professor matches ~10 Teaching rows.
Since 20 CS professors, hence 200 teaching
records.

m All index entries for a particular Profld are in
same bucket. Assume ~1.2 I/Os to get a
bucket.

e Cost = 1.2 x 20 (to fetch index entries for 20
CS professors) + 200 (to fetch Teachlng
rows, since hash_index is unclp=*=== = 224

12 = 20 x 10

Profld @ Teaching

23

Cost Example 2 -
select/project

m Pipe result of join to select (on Semester)
and project (on Name) at no I/O cost

m Cost of output same as for Example 1

m Total cost:
6 (select on Professor) + 224 (join) = 230

m Comparison:
4200 (example 1) vs. 230 (example 2) !!!

24

12

Estimating Output Size

m It is important to estimate the size of the
output of a relational expression - size
serves as input to the next stage and
affects the choice of how the next stage will
be evaluated.

m Size estimation uses the following
measures on a particular instance of R:
m Tuples(R): number of tuples
m Blocks(R): number of blocks
m Values(R.A): number of distinct values of A
m MaxVal(R.A): maximum value of A
m MinVal(R.A): minimum value of A

25

Estimating Output Size

m For the query:

SELECT TargetList
FROM R, R,,...,R,

) _WHERE Condition
m Reduction factor is

Blocks (result set)

Blocks(R,) X ... X Blocks(R,)

e Estimates by how much query result is smaller than
input

26

13

Estimation of Reduction Factor

m Assume that reduction factors due
to target list and query condition are
independent

m Thus:
reduction(Query) =
reduction(TargetList) x
reduction(Condition)

27

Reduction Due to Condition

1
m reduction (R.A=val) = Values(RA)

1
m reduction (R.A=R;.B) = max(Values(R,.A), Values(R;.B))

MaxVal(R,.A) - val

m reduction (R.A > val) =
Values(R,.A)

28

14

Reduction Due to TargetList

m reduction(TargetList) =

number-of-attributes (TargetList)
number-of-attributes (R,)

29

Estimating Weight of Attribute

weight(R.A) =
Tuples(R) x reduction(R.A=value)

30

15

Choosing Query Execution Plan

m Step 1: Choose a logical plan
m Step 2: Reduce search space

m Step 3: Use a heuristic search to
further reduce complexity

31

Step 1: Choosing a Logical
Plan

m Involves choosing a query tree, which
indicates the order in which algebraic
operations are applied

m Heuristic: Pushed trees are good, but
sometimes “nearly fully pushed” trees are
better due to indexing (as we saw in the
example)

m So: Take the initial "masterplan” tree and
produce a fully pushed tree plus several
nearly fully pushed trees.

32

16

Step 2: Reduce Search Space

m Deal with associativity of binary
operators (join, union, ...)
< <] <]

— T N
>l X <] D

AN

C
Logical query A B C D A
execution plan . N 5
Equivalent .
uerv tree Equivalent left
R deep query tree

33

Step 2 (cont’d)

m TWO issues:
m Choose a particular shape of a tree
(like in the previous slide)
e Equals the number of ways to parenthesize
N-way join — grows very rapidly
m Choose a particular permutation of the
leaves

e E.g., 4! permutations of the leaves A, B, C,
D

34

17

Step 2: Dealing With Associativity

m Too many trees to evaluate: settle on a
particular shape: left-deep tree.
m Used because it allows pipelining:
Pl PZ P3

A< B X X <] c ~

A

A

YD><]D

m Property: once a row of X has been output by
P,, it need not be output again (but C may have
to be processed several times in P, for
successive portions of X)

m Advantage: none of the intermediate relations
(X, Y) have to be completely materialized and
saved on disk.

e Important if one such relation is very large, but the
final result is small

35

Step 2: Dealing with
Associativity

m consider the alternative: if we

use the associxtlon ((Al 'B)
(C D))

P, |A DB

Each row of X must
be processed against

\){A
/ XP><] Y all of Y. Hence all of
Y

Y (can be very large)
P, must be stored

in P5, or P, has to
recompute it several
times.

cP><]p

36

18

Step 3: Heuristic Search

m The choice of left-deep trees still
leaves open too many options (N!

permytations):

= (((Anq B) D),

= (((C A) D%) B), ...
m A heuristic (often dynamic

programming based) algorithm is

used to get a ‘good’ plan

37

Step 3: Dynamic Programming
Algorithm

m Just an idea - see book

m To compute a join of E;, E,, ..., Ey in a left-
deep manner:
m Start with 1-relation expressions (can involve g,
1))
m Choose the best and “nearly best” plans for each

(a plan is considered nearly best if its out put
has some "“interesting” form, e.g., is sorted)

m Combine these 1-relation plans into 2-relation
expressions. Retain only the best and nearly
best 2-relation plans

m Do same for 3-relation expressions, etc.

38

19

Index-Only Queries

m A Bt tree index with search key attributes
A; A, ..., A, has stored in it the values of
these attributes for each row in the table.

m Queries involving a prefix of the attribute list A;,
A,, .., A, can be satisfied using only the index -
no access to the actual table is required.

m Example: Transcript has a clustered B+
tree index on StudId. A frequently asked
query is one that requests all grades for a
given CrsCode.

m Problem: Already have a clustered index on

StudId - cannot create another one (on
CrsCode)

m Solution: Create an unclustered index on
(CrsCode, Grade) 39

20

