Query Optimization

CS 317/387

Query Evaluation

- **Problem**: An SQL query is declarative – does not specify a query execution plan.

- A relational algebra expression is procedural
 - there is an associated query execution plan.

- **Solution**: Convert SQL query to an equivalent relational algebra and evaluate it using the associated query execution plan.
 - *But which equivalent expression is best?*
Select Distinct targetlist from $R1,\ldots,Rn$ Where condition

Is equivalent to:

$$\pi_{\text{targetlist}} (\sigma_{\text{condition}} (R1 \times R2 \times \ldots \times RN))$$

Example

$$\pi_{\text{Name}} (\sigma_{\text{Id} = \text{ProfId} \land \text{CrsCode} = 'CS532'} (\text{Professor} \times \text{Teaching}))$$

- Result can be < 100 bytes
- But if each Relation is 50k then we end up computing an intermediate result Professor x Teaching that is over 1G

Problem: Find an equivalent relational algebra expression that can be evaluated “efficiently”.
Query Optimizer

- Uses heuristic algorithms to evaluate relational algebra expressions. This involves:
 - estimating the cost of a relational algebra expression
 - transforming one relational algebra expression to an equivalent one
 - choosing access paths for evaluating the subexpressions

- Query optimizers do not “optimize”– just try to find “reasonably good” evaluation strategies
Equivalence Preserving Transformation

- To transform a relational expression into another equivalent expression we need transformation rules that preserve equivalence.

- Each transformation rule:
 - Is provably correct (i.e., does preserve equivalence)
 - Has a heuristic associated with it.

Selection and Projection Rules

- Break complex selection into simpler ones:
 \[\sigma_{\text{Cond}_1 \land \text{Cond}_2}(R) \equiv \sigma_{\text{Cond}_1}(\sigma_{\text{Cond}_2}(R)) \]

- Break projection into stages:
 \[\Pi_{\text{attr}}(R) \equiv \pi_{\text{attr}}(\pi_{\text{attr}'}(R)), \text{ if } \text{attr} \subseteq \text{attr}' \]

- Commute projection and selection:
 \[\Pi_{\text{attr}}(\sigma_{\text{Cond}}(R)) \equiv \sigma_{\text{Cond}}(\pi_{\text{attr}}(R)), \]
 - if \(\text{attr} \supseteq \text{all attributes in } \text{Cond} \)
Commutativity, Associativity of Joins

- Join commutativity: \(R \bowtie S \equiv S \bowtie R \)
 - Used to reduce cost of nested loop evaluation strategies
 (smaller relation should be in outer loop)
- Join associativity: \(R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T \)
 - Used to reduce the size of intermediate relations in
 computation of multi-relational join
 - first compute the join that yields smaller intermediate
 result
- N-way join has \(T(N) \times N! \) different evaluation plans–
 - \(T(N) \) is the number of parenthesized expressions
 - \(N! \) is the number of permutations
- Query optimizer cannot look at all plans Hence it
 does not necessarily produce optimal plan

Pushing Selections and Projections

- \(\sigma_{Cond}(R \times S) \equiv R \bowtie_{Cond} S \)
 - \(Cond \) relates attributes of both R and S
 - Reduces size of intermediate relation since rows can be
discarded sooner
- \(\sigma_{Cond}(R \times S) \equiv \sigma_{Cond}(R) \times S \)
 - \(Cond \) involves only the attributes of R
 - Reduces size of intermediate relation since rows of R are
discarded sooner
- \(\pi_{attr}(R \times S) \equiv \pi_{attr}(\pi_{attr'} (R) \times S), \)
 - if \(attributes(R) \supseteq attr' \supseteq attr \)
 - reduces the size of an operand of product
Equivalence Example

\[\sigma_{C1 \land C2 \land C3}(R \times S) \equiv \sigma_{C1}(\sigma_{C2}(\sigma_{C3}(R \times S))) \equiv \sigma_{C1}(\sigma_{C2}(R) \times \sigma_{C3}(S)) \equiv \sigma_{C2}(R) \propto_{C1} \sigma_{C3}(S) \]

Assuming C1 involves attributes of R and S, C2 involves only R and C3 involves only S.

Query Tree

Tree structure that corresponds to a relational algebra expression:

– A leaf node represents an input relation;
– An internal node represents a relation obtained by applying one relational operator to its child nodes;
– The root relation represents the answer to the query;
– Two query trees are equivalent if their root relations are the same.

Left Deep Tree: right child of a join is always a base relation.

\[\pi_{S.name}(\sigma_{R.type = 100 \land S.rating > 5}(R \bowtie S)) \]
Query Plan

Query Tree with specification of algorithms for each operation.

– A query tree may have different execution plans
– Some plans are more efficient to execute than others.

Two main issues:
– For a given query, what plans are considered?
– How is the cost of a plan estimated?

Ideally: want to find best plan. Practically: avoid worst plans!

Cost - Example 1

```sql
SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId  -- join condition
  AND P.DeptId = 'CS' AND T.Semester = 'F2007'

π_Name(σ_DeptId='CS' ∧ Semester='F2007')(Professor ⨿_Id=ProfId Teaching))
```

Master query execution plan (nothing pushed)
Metadata on Tables (in system catalogue)

- **Professor (Id, Name, DeptId)**
 - size: 200 pages, 1000 rows, 50 departments
 - indexes: clustered, 2-level B+tree on DeptId, hash on Id

- **Teaching (ProfId, CrsCode, Semester)**
 - size: 1000 pages, 10,000 rows, 4 semesters
 - indexes: clustered, 2-level B+tree on Semester; hash on ProfId

Definition: Weight of an attribute – average number of rows that have a particular value
- weight of Id = 1 (it is a key)
- weight of Prof Id = 10 (10,000 classes/1000 professors)

Estimating Cost - Example

- **Join** - block-nested loops with 51 page buffer
 - Scanning Professor (outer loop): 200 page transfers, (4 iterations, 50 transfers each)
 - Finding matching rows in Teaching (inner loop): 1000 page transfers **for each iteration** of outer loop
 - 250 professors in each 50 page chunk * 10 matching Teaching tuples per professor = 2500 tuple fetches = 2500 page transfers for Teaching (Why?)
 - By sorting the record Ids of these tuples we can get away with only 1000 page transfers (Why?)
 - total cost = 200+4*1000 = 4200 page transfers
Estimating Cost - Example

- *Selection* and *projection* – scan rows of intermediate file, discard those that don’t satisfy selection, project on those that do, write result when output buffer is full.

- Complete algorithm:
 - do *join*, write result to intermediate file on disk
 - read intermediate file, do *select/project*, write final result
- **Problem**: unnecessary I/O

Pipelining

- **Solution**: use *pipelining*:
 - *join* and *select/project* act as co-routines, operate as producer/consumer sharing a buffer in main memory.
 - When *join* fills buffer; *select/project* filters it and outputs result
 - Process is repeated until *select/project* has processed last output from *join*
 - Performing *select/project* adds no additional cost
Estimating Cost - Example 1

- Total cost:
 \[4200 + (\text{cost of outputting final result}) \]

- We will disregard the cost of outputting final result in comparing with other query evaluation strategies, since this will be same for all
Cost Example 2 -- selection

- Compute $\sigma_{DeptId='CS'}(Professor)$ (to reduce size of one join table) using clustered, 2-level B+ tree on DeptId.
 - 50 departments and 1000 professors; hence weight of DeptId is 20 (roughly 20 CS professors). These rows are in ~4 consecutive pages in Professor.
 - Cost = 4 (to get rows) + 2 (to search index) = 6
 - keep resulting 4 pages in memory and pipe to next step

Cost Example 2 -- join

- Index-nested loops join using hash index on ProfId of Teaching and looping on the selected professors (computed on previous slide)
 - Since selection on Semester was not pushed, hash index on ProfId of Teaching can be used
 - Note: if selection on Semester were pushed, the index on ProfId would have been lost – an advantage of not using a fully pushed query execution plan
Cost Example 2 – *join* (cont’d)

- Each professor matches ~10 Teaching rows. Since 20 CS professors, hence 200 teaching records.
- All index entries for a particular *ProfId* are in same bucket. Assume ~1.2 I/Os to get a bucket.
 - Cost = 1.2 × 20 (to fetch index entries for 20 CS professors) + 200 (to fetch Teaching rows, since hash index is unclustered) = 224

Cost Example 2 – *select/project*

- Pipe result of join to *select* (on *Semester*) and *project* (on *Name*) at no I/O cost
- Cost of output same as for Example 1
- Total cost:
 - 6 (select on Professor) + 224 (join) = 230
- Comparison:
 - 4200 (example 1) vs. 230 (example 2) !!!
Estimating Output Size

- It is important to estimate the size of the output of a relational expression – size serves as input to the next stage and affects the choice of how the next stage will be evaluated.

- Size estimation uses the following measures on a particular instance of R:
 - \textit{Tuples}(R): number of tuples
 - \textit{Blocks}(R): number of blocks
 - \textit{Values}(R.A): number of distinct values of A
 - \textit{MaxVal}(R.A): maximum value of A
 - \textit{MinVal}(R.A): minimum value of A

Estimating Output Size

- For the query:

\begin{verbatim}
SELECT TargetList
FROM R_1, R_2, ..., R_n
WHERE Condition
\end{verbatim}

- \textit{Reduction factor} is

\[
\frac{\text{Blocks (result set)}}{\text{Blocks(R}_{1}\times \ldots \times \text{Blocks(R}_{n})}
\]

- Estimates by how much query result is smaller than input
Estimation of Reduction Factor

- Assume that reduction factors due to target list and query condition are independent

- Thus:
 \[\text{reduction}(ext{Query}) = \text{reduction}(ext{TargetList}) \times \text{reduction}(ext{Condition}) \]

Reduction Due to Condition

- \(\text{reduction} (R_i.A=val) = \frac{1}{\text{Values}(R.A)} \)
- \(\text{reduction} (R_i.A=R_j.B) = \frac{1}{\max(\text{Values}(R_i.A), \text{Values}(R_j.B))} \)
- \(\text{reduction} (R_i.A > val) = \frac{\text{MaxVal}(R_i.A) - val}{\text{Values}(R_i.A)} \)
Reduction Due to TargetList

- \(\text{reduction}(\text{TargetList}) = \frac{\text{number-of-attributes (TargetList)}}{\text{number-of-attributes (R_i)}} \)

Estimating Weight of Attribute

- \(\text{weight}(R.A) = Tuples(R) \times \text{reduction}(R.A=value) \)
Choosing Query Execution Plan

- Step 1: Choose a *logical* plan
- Step 2: Reduce search space
- Step 3: Use a heuristic search to further reduce complexity

Step 1: Choosing a Logical Plan

- Involves choosing a query tree, which indicates the order in which algebraic operations are applied

 - *Heuristic*: Pushed trees are good, but sometimes “nearly fully pushed” trees are better due to indexing (as we saw in the example)

 - *So*: Take the initial “masterplan” tree and produce a *fully pushed* tree plus several *nearly fully pushed* trees.
Step 2: Reduce Search Space

- Deal with *associativity* of binary operators (join, union, ...)

![Logical query execution plan](image1)

Equivalent query tree

Equivalent *left deep query tree*

Step 2 (cont’d)

- Two issues:
 - Choose a particular *shape* of a tree (like in the previous slide)
 - Equals the number of ways to parenthesize N-way join – grows very rapidly
 - Choose a particular permutation of the leaves
 - E.g., 4! permutations of the leaves A, B, C, D
Step 2: Dealing With Associativity

- Too many trees to evaluate: settle on a particular shape: *left-deep tree*.
- Used because it allows *pipelining*:

 ![Pipeline Diagram]

 - Property: once a row of X has been output by P_1, it need not be output again (but C may have to be processed several times in P_2 for successive portions of X)
 - Advantage: none of the intermediate relations (X, Y) have to be completely materialized and saved on disk.
 - Important if one such relation is very large, but the final result is small

Step 2: Dealing with Associativity

- consider the alternative: if we use the association $((A \square B) (C \square D))$

 ![Alternative Diagram]

 Each row of X must be processed against all of Y. Hence all of Y (can be very large) must be stored in P_3, or P_2 has to recompute it several times.
Step 3: Heuristic Search

- The choice of left-deep trees still leaves open too many options (N! permutations):
 - (((A B) C) D),
 - (((C A) D) B),
- A heuristic (often dynamic programming based) algorithm is used to get a ‘good’ plan

Step 3: Dynamic Programming Algorithm

- Just an idea – see book
- To compute a join of \(E_1, E_2, ..., E_N \) in a left-deep manner:
 - Start with 1-relation expressions (can involve \(\sigma \), \(\pi \))
 - Choose the best and “nearly best” plans for each (a plan is considered nearly best if its output has some “interesting” form, e.g., is sorted)
 - Combine these 1-relation plans into 2-relation expressions. Retain only the best and nearly best 2-relation plans
 - Do same for 3-relation expressions, etc.
Index-Only Queries

- A B^+ tree index with search key attributes $A_1, A_2, ..., A_n$ has stored in it the values of these attributes for each row in the table.
 - Queries involving a prefix of the attribute list $A_1, A_2, .., A_n$ can be satisfied using only the index – no access to the actual table is required.

- **Example**: Transcript has a clustered B^+ tree index on $StudId$. A frequently asked query is one that requests all grades for a given $CrsCode$.
 - **Problem**: Already have a clustered index on $StudId$ – cannot create another one (on $CrsCode$)
 - **Solution**: Create an unclustered index on $(CrsCode, Grade)$