
1

CS 317/387

Towards SQL -
Relational Algebra

A Relation is a Table

name manf

Winterbrew Pete’s

Bud Lite Anheuser-Busch

Beers

Attributes

(column

headers)

Tuples

(rows)

Schemas

� Relation schema = relation name and 
attribute list.

� Optionally: types of attributes.

� Example: Beers(name, manf) or Beers(name: 
string, manf: string)

� Database = collection of relations.

� Database schema = set of all relation 
schemas in the database.



2

Why Relations?

� Very simple model.

� Often matches how we think about data.

� Abstract model that underlies SQL, the most 
important database language today.

From E/R Diagrams to Relations

� Entity set -> relation.

� Attributes -> attributes.

� Relationships -> relations whose attributes 
are only:

� The keys of the connected entity sets.

� Attributes of the relationship itself.

Entity Set -> Relation

Relation:  Beers(name, manf)

Beers

name manf



3

Relationship -> Relation

Drinkers BeersLikes

Likes(drinker, beer)
Favorite

Favorite(drinker, beer)

Married

husband

wife

Married(husband, wife)

name addr name manf

Buddies

1 2

Buddies(name1, name2)

What is an “Algebra”

Mathematical system consisting of:

� Operands --- variables or values from which 
new values can be constructed.

� Operators --- symbols denoting procedures 
that construct new values from given 
values.

More on Algebras

� Arithmetic: operands are variables and constants, 
operators are +,−,×,÷, /, etc.

� Set algebra: operands are sets and operators are  
Union, Intersection Set Difference etc. 

� An algebra allows us to construct expressions by 
combining operands and expression using 
operators.
� a2 + 2 × a × b + b2, (a + b)2.

� R – (R-S) , R ∩ S etc. 



4

What is Relational Algebra?

� An algebra whose operands are relations or 
variables that represent relations.

� Operators are designed to do the most common 
things that we need to do with relations in a 
database.
� The result is an algebra that can be used as a basis for a 
query language for relations.

� Relational algebra is a notation for specifying 
queries about the contents of relations.

� Notation of relational algebra eases the task of 
reasoning about queries.
� Operations in relational algebra have counterparts in SQL.

Roadmap

� There is a core relational algebra that has 
traditionally been thought of as the
relational algebra.

� But there are several other operators we 
shall add to the core in order to model 
better the language SQL --- the principal 
language used in relational database 
systems.

Core Relational Algebra

� Union, intersection, and difference.
� Usual set operations, but require both operands have the 

same relation schema.

� Selection: picking certain rows.

� Projection: picking certain columns.
� Both Selection and Projection remove certain parts of a 

relation!

� Products and joins: compositions of relations.

� Renaming of relations and attributes.



5

Union

� The union of two relations R and S is the set of 
tuples that are in R or in S or in both.

� R and S must have identical sets of attributes and 
the types of the attributes must be the same.

� The attributes of R must occur in the same order as 
the attributes in S.

� RA R ∪ S

(SELECT * FROM R) UNION (SELECT * FROM S);

Intersection

� The intersection of two relations R and S is 
the set of tuples that are in both R and S.

� Same conditions hold on R and S as for the 
union operator.

� RA R ∩ S

(SELECT * FROM R) INTERSECT (SELECT * FROM 

S);

Difference

� The difference of two relations R and S is the set of 
tuples that are in R but not in S.

� Same conditions hold on R and S as for the union 
operator.

� RA:  R − S

� (SELECT * FROM R) EXCEPT (SELECT * FROM S);

� R – (R-S) = ??

� R  ∩ S



6

Selection

� R1 := SELECTC (R2)

� C is a condition (as in “if” statements) that 
refers to attributes of R2.

� R1 is all those tuples of R2 that satisfy C.

� Basis of:
SELECT *  FROM R WHERE C;

More on Selection

� Syntax of C: similar to conditionals in 
programming languages.

� Values compared are constants and 
attributes of the relations mentioned in the 
FROM clause.

� We may apply usual arithmetic operators to 
numeric values before comparing them.

� SQL Compare values using =, <, >, <=, >=.

Example

bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75

Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

JoeMenu := SELECTbar=“Joe’s”(Sells):



7

Projection

� R1 := PROJL (R2)

� L is a list of attributes from the schema of R2.
� Same as selecting select columns from a table.

� R1 is constructed by looking at each tuple of R2, 
extracting the attributes on list L, in the order 
specified, and creating from those components a 
tuple for R1.

� Eliminate duplicate tuples, if any.

SELECT A1, A2, . . . , An  FROM R;

Example

beer price
Bud 2.50
Miller 2.75
Miller 3.00

Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

Prices := PROJbeer,price(Sells):

Product

� R3 := R1 * R2

� Pair each tuple t1 of R1 with each tuple t2 of R2.

� Concatenation t1t2 is a tuple of R3.

� Schema of R3 is the attributes of R1 and then 
R2, in order.

� But beware attribute A of the same name in R1 
and R2: use R1.A and R2.A.

SELECT * FROM R1, R2



8

Example: R3 := R1 * R2

R1( A, B )
1 2
3 4

R2( B, C )
5 6
7 8
9 10

R3( A, R1.B, R2.B, C )
1 2 5 6
1 2 7 8
1 2 9 10
3 4 5 6
3 4 7 8
3 4 9 10

Theta-Join

� R3 := R1 JOINC R2

� Set of tuples in the Cartesian product that satisfies 
some condition C

� Computing it
� Take the product R1 * R2.

� Then apply SELECTC to the result.

� C can be any boolean-valued condition.
� Historic versions of this operator allowed only A θ B, where 

θ is =, <, etc.; hence the name “theta-join.”

SELECT * from R1, R2 WHERE C

Example

Sells( bar, beer, price  ) Bars( name, addr        )
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Sue’s River Rd.
Sue’s Bud 2.50
Sue’s Coors 3.00

BarInfo := Sells JOIN Sells.bar = Bars.name Bars

BarInfo( bar, beer, price, name, addr        )
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Joe’s Maple St.
Sue’s Bud 2.50 Sue’s River Rd.
Sue’s Coors 3.00 Sue’s River Rd.



9

Natural Join

� The natural join of two relations R and S is a set of 
pairs of tuples, one from R and one from S, that 
agree on whatever attributes are common to the 
schemas of R and S

� Connect two relations by:
� Equating attributes of the same name, and

� Projecting out one copy of each pair of equated attributes.

� The schema for the result contains the union of the 
attributes of R and S.

� Denoted R3 := R1 JOIN R2

Example

Sells( bar, beer, price  ) Bars( bar, addr        )
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Sue’s River Rd.
Sue’s Bud 2.50 Ben’s  Central Av
Sue’s Coors 3.00

BarInfo := Sells JOIN Bars
Note: Bars.name has become Bars.bar to make the natural
join “work.”

BarInfo( bar, beer, price, addr        )
Joe’s Bud 2.50 Maple St.
Joe’s Milller 2.75 Maple St.
Sue’s Bud 2.50 River Rd.
Sue’s Coors 3.00 River Rd.

More on Natural Join

� A dangling tuple is one that fails to pair with 
any tuple in the other relation.

� Ben’s bar on Central Ave. in the previous 
example

R(A,B, C) and S(B, C,D).

SELECT R.A, R.B, R.C, S.D FROM R,S

WHERE R.B = S.B AND R.C = S.C;



10

Renaming

� The RENAME operator gives a new 
schema to a relation.

� R1 := RENAMER1(A1,…,An)(R2) makes R1 
be a relation with attributes A1,…,An
and the same tuples as R2.

� Simplified notation: R1(A1,…,An) := R2.

Example

Pubs( bar, addr        )
Joe’s Maple St.
Sue’s River Rd.

Bars( name, addr        )
Joe’s Maple St.
Sue’s River Rd.

Pubs(bar, addr) := Bars

Building Complex Expressions

� Combine operators with parentheses 
and precedence rules.

� Three notations, just as in arithmetic:

1. Sequences of assignment statements.

2. Expressions with several operators.

3. Expression trees.



11

Sequences of Assignments

� Create temporary relation names.

� Renaming can be implied by giving relations 
a list of attributes.

� Example: R3 := R1 JOINC R2 can be 
written:

R4 := R1 * R2

R3 := SELECT
C 
(R4)

Expressions in a Single 
Assignment

� Example: the theta-join R3 := R1 JOINC R2 
can be written: R3 := SELECTC (R1 * R2)

� Precedence of relational operators:

1. [SELECT, PROJECT, RENAME] (highest).

2. [PRODUCT, JOIN].

3. INTERSECTION.

4. [UNION, --]

Expression Trees

� Leaves are operands --- either variables 
standing for relations or particular, constant 
relations.

� Interior nodes are operators, applied to 
their child or children.



12

Example

� Using the relations Bars(name, addr) and 
Sells(bar, beer, price), find the names 

of all the bars that are either on Maple St. 
or sell Budweiser for less than $3.

As a Tree:

Bars Sells

SELECTaddr = “Maple St.” SELECTprice<3 AND beer=“Bud”

PROJECTname

RENAMER(name)

PROJECTbar

UNION

Example

� Using Sells(bar, beer, price), find 

the bars that sell two different beers at 
the same price.

� Strategy: by renaming, define a copy of 
Sells, called S(bar, beer1, price).  The 
natural join of Sells and S consists of 
quadruples (bar, beer, beer1, price) such 
that the bar sells both beers at this price.



13

The Tree

Sells Sells

RENAMES(bar, beer1, price)

JOIN

PROJECTbar

SELECTbeer != beer1

Schemas for Results

� Union, intersection, and difference: the 
schemas of the two operands must be the 
same, so use that schema for the result.

� Selection: schema of the result is the same 
as the schema of the operand.

� Projection: list of attributes tells us the 
schema.

Schemas for Results --- (2)

� Product: schema is the attributes of both 
relations.

� Use R.A, etc., to distinguish two attributes 
named A.

� Theta-join: same as product.

� Natural join: union of the  attributes of 
the two relations.

� Renaming: the operator tells the schema.



14

Relational Algebra on Bags

� A bag (or multiset ) is like a set, but an 
element may appear more than once.

� Example: {1,2,1,3} is a bag.

� Example: {1,2,3} is also a bag that 
happens to be a set.

Why Bags?

� SQL, the most important query language for 
relational databases, is actually a bag 
language.

� Some operations, like projection, are much 
more efficient on bags than sets.

Operations on Bags

� Selection applies to each tuple, so its effect 
on bags is like its effect on sets.

� Projection also applies to each tuple, but as 
a bag operator, we do not eliminate 
duplicates.

� Products and joins are done on each pair of 
tuples, so duplicates in bags have no effect 
on how we operate.



15

Example: Bag Selection

R( A, B  )
1 2
5 6
1 2

= A B
1 2
1 2

SELECTA+B<5 (R)

Example: Bag Projection

R( A, B  )
1 2
5 6
1 2

= A
1
5
1

PROJECTA (R)

Example: Bag Product

R( A, B  ) S( B, C  )
1 2 3 4
5 6 7 8
1 2

R * S = A R.B S.B C
1 2 3 4
1 2 7 8
5 6 3 4
5 6 7 8
1 2 3 4
1 2 7 8



16

Example: Bag Theta-Join

R( A, B  ) S( B, C  )
1 2 3 4
5 6 7 8
1 2

R JOIN R.B<S.B S = A R.B S.B C
1 2 3 4
1 2 7 8
5 6 7 8
1 2 3 4
1 2 7 8

Bag Union

� An element appears in the union of two 
bags the sum of the number of times it 
appears in each bag.

{1,2,1} ∪∪∪∪{1,1,2,3,1} = {1,1,1,1,1,2,2,3}

Bag Intersection

� An element appears in the intersection of 
two bags the minimum of the number of 
times it appears in either.

{1,2,1,1} ∩∩∩∩ {1,2,1,3} = {1,1,2}.



17

Bag Difference

� An element appears in the difference   A – B
of bags as many times as it appears in A, 
minus the number of times it appears in B.

� But never less than 0 times.

{1,2,1,1} – {1,2,3} = {1,1}.

Beware: Bag Laws != Set Laws

� Some, but not all algebraic laws that hold 
for sets also hold for bags.

� Question: Does the commutative law for 
Union hold for bags?

� Answer: The commutative law for union (R 
∪ S = S ∪ R ) does hold for bags.
� Since addition is commutative, adding the 

number of times x appears in R and S doesn’t 
depend on the order of R and S.

More on sets Vs bags

� Set union is idempotent, meaning that S ∪

S = S.

� Question: Is Bag union idempotent?

� Answer: If x appears n times in S, then it 
appears 2n times in  S ∪ S.  Thus S ∪ S != 
S in general.



18

The Extended Algebra

� DELTA = eliminate duplicates from bags.

� TAU = sort tuples.

� Extended projection : arithmetic, duplication of 
columns.

� GAMMA = grouping and aggregation.

� Outerjoin : avoids “dangling tuples” = tuples 
that do not join with anything.

Duplicate Elimination

� R1 := DELTA(R2).

� R1 consists of one copy of each tuple that 
appears in R2 one or more times.

Example: Duplicate Elimination

R =  ( A B )
1 2
3 4
1 2

DELTA(R) = A B
1 2
3 4



19

Sorting

� R1 := TAUL (R2).

� L is a list of some of the attributes of R2.

� R1 is the list of tuples of R2 sorted first 
on the value of the first attribute on L, 
then on the second attribute of L, and 
so on.

� Break ties arbitrarily.

Example: Sorting

TAUB (R) = [(5,2), (1,2), (3,4)]

R =  ( A B )
1 2
3 4
5 2

Extended Projection

� Using the same PROJL operator, we allow 
the list L to contain arbitrary 
expressions involving attributes, for 
example:

1. Arithmetic on attributes, e.g., A+B.

2. Duplicate occurrences of the same attribute.



20

Example: Extended Projection

R =  ( A B )
1 2
3 4

PROJA+B,A,A (R) = A+B A1 A2
3 1 1
7 3 3

Aggregation Operators

� Aggregation operators are not operators of 
relational algebra.

� Rather, they apply to entire columns of a 
table and produce a single result.

� The most important examples: SUM, AVG, 
COUNT, MIN, and MAX.

Example: Aggregation

R =  ( A B )
1 3
3 4
3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3



21

Grouping Operator

� R1 := GAMMA
L
(R2)  

� L is a list of elements that are either:

1. Individual (grouping ) attributes.

2. AGG(A ), where AGG is one of the aggregation 
operators and A is an attribute.

Applying GAMMAL(R)

� Group R according to all the grouping 
attributes on list L.

� That is: form one group for each distinct list 
of values for those attributes in R.

� Within each group, compute AGG(A ) for 
each aggregation on list L.

� Result has one tuple for each group:
1. The grouping attributes and

2. Their group’s aggregations. 

Example: 
Grouping/Aggregation

R =  ( A B C )
1 2 3
4 5 6
1 2 5

GAMMAA,B,AVG(C) (R) = ??

First, group R by A and B :
A B C
1 2 3
1 2 5
4 5 6

Then, average C within
groups:

A B AVG(C)
1 2 4
4 5 6



22

Outerjoin

� Suppose we join R JOINC S.

� A tuple of R that has no tuple of S with 
which it joins is said to be dangling.
� Similarly for a tuple of S.

� Outerjoin preserves dangling tuples by 
padding them with a special NULL symbol 
in the result.

Example: Outerjoin

R =  ( A B ) S =  ( B C )
1 2 2 3
4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling.

R OUTERJOIN S = A B C
1 2 3
4 5 NULL
NULL 6 7


