
1

CS 317/387

Structured Query
Language (SQL)

What is SQL?

� SQL = Structured Query Language (often
pronounced as “sequel.”

� SQL is the primary mechanism for defining,
querying and modifying the data in an RDB.

� SQL is declarative:
� Say what you want to accomplish, without specifying how.

� One of the main reasons for the commercial success of
RDMBSs.

� SQL has many standards and implementations:
� ANSI SQL

� SQL-92/SQL2 (null operations, outerjoins)

� SQL-99/SQL3 (recusion, triggers, objects)

� Vendor-specific variations.

Why SQL?

� SQL is a very-high-level language.

� Say “what to do” rather than “how to do it.”

� Avoid a lot of data-manipulation details
needed in procedural languages like C++ or
Java.

� Database management system figures
out “best” way to execute query.

� Called “query optimization.”

2

Our Running Example

� All our SQL queries will be based on the
following database schema.

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

Another Schema

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street,
customer-type)

account (account-number, branch-name,
balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Select-From-Where

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of the tables

3

Example

� Using Beers(name, manf), what beers are
made by Anheuser-Busch?

SELECT name

FROM Beers

WHERE manf = ’Anheuser-Busch’;

Notice SQL uses single-quotes for strings.
SQL is case-insensitive, except inside strings.

Result of Query

name

Bud

Bud Lite

Michelob

. . .

The answer is a relation with a single attribute -
name, and tuples with the values for that attribute
- in our case, name of each beer
by Anheuser-Busch, such as Bud, Michelob etc. .

Meaning of Single-Relation Query

� Begin with the relation in the FROM clause.

� Apply the selection indicated by the WHERE
clause.

� Apply the extended projection indicated by
the SELECT clause.

4

Operational Semantics

Check if
Anheuser-Busch

name manf

Bud Anheuser-Busch

tv

Include tv.name

in the result

Operational Semantics

� To implement this algorithm think of a tuple
variable ranging over each tuple of the
relation mentioned in FROM.

� Check if the “current” tuple satisfies the
WHERE clause.

� If so, compute the attributes or expressions of
the SELECT clause using the components of
this tuple.

* in SELECT clauses

� When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation.”

� Example using Beers(name, manf):

SELECT * FROM Beers

WHERE manf = ’Anheuser-Busch’;

5

Result of Query:

name manf

Bud Anheuser-Busch

Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

.

Now, the result has each of the attributes
of Beers.

Renaming Attributes

� If you want the result to have different
attribute names, use “AS <new name>” to
rename an attribute.

� Example based on Beers(name, manf):

SELECT name AS beer, manf

FROM Beers

WHERE manf = ’Anheuser-Busch’

Result of Query:

beer manf

Bud Anheuser-Busch

Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

.

6

Expressions in SELECT Clauses

� Any expression that is syntactically correct
can appear as an element of a SELECT
clause.

� Example: from Sells(bar, beer, price):

SELECT bar, beer, price * 40 AS

priceInRupees

FROM Sells;

Result of Query

bar beer priceInRupees

Joe’s Bud 80

Sue’s Miller 120

… … …

Constant Expressions

� From Likes(drinker, beer) :

SELECT drinker, ’likes Bud’ AS

whoLikesBud

FROM Likes

WHERE beer = ’Bud’;

7

Result of Query

drinker whoLikesBud

Sally likes Bud

Fred likes Bud

… …

Complex Conditions in
WHERE Clause

� From Sells(bar, beer, price), find the price
Joe’s Bar charges for Bud:

SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’;

Notice how we
get a single-quote
in strings.

Patterns

� WHERE clauses can have conditions in which a
string is compared with a pattern, to see if it
matches.

� Syntax: <Attribute> LIKE <pattern> or
<Attribute> NOT LIKE <pattern>

� Pattern is a quoted string with:
� % = “any string”

� _ = “any character”

8

Example

� From Drinkers(name, addr, phone) find
the drinkers who fall within exchange
555:

SELECT name

FROM Drinkers

WHERE phone LIKE ’%555-_ _ _ _’;

The “between” operator

� SQL includes a between comparison
operator

� E.g. Find the loan number of those loans
with loan amounts between Rs90,000 and
Rs100,000 (that is, ≥ Rs.90,000 and ≤ Rs.
100,000)

select loan-number

from loan

where amount between 90000 and 100000

NULL Values

� Tuples in SQL relations can have NULL as a
value for one or more components.

� Meaning depends on context. Two common
cases:

� Missing value : e.g., we know Joe’s Bar has
some address, but we don’t know what it is.

� Inapplicable : e.g., the value of attribute
spouse for an unmarried person.

9

Comparing NULL’s to Values

� The logic of conditions in SQL is really 3-
valued logic: TRUE, FALSE, UNKNOWN.

� When any value is compared with NULL,
the truth value is UNKNOWN.

� But a query only produces a tuple in the
answer if its truth value for the WHERE
clause is TRUE (not FALSE or UNKNOWN).

Three-Valued Logic

� To understand how AND, OR, and NOT work in
3-valued logic, think of TRUE = 1, FALSE = 0,
and UNKNOWN = ½.

� AND = MIN; OR = MAX, NOT(x) = 1-x.

� Example:

TRUE AND (FALSE OR NOT(UNKNOWN)) =
MIN(1, MAX(0, (1 - ½))) =

MIN(1, MAX(0, ½) = MIN(1, ½) = ½.

Surprising Example

� From the following Sells relation:

bar beer price

SELECT bar

FROM Sells

WHERE price < 2.00 OR price >= 2.00;

UNKNOWN UNKNOWN

UNKNOWN

Joe’s bar Bud NULL

10

Reason: 2-Valued Laws != 3-
Valued Laws

� Some common laws, like commutativity of
AND, hold in 3-valued logic.

� But not others, e.g., the “law of the
excluded middle”: p OR NOT p = TRUE.

� When p = UNKNOWN, the left side is MAX(
½, (1 – ½)) = ½ != 1.

More on Null

� The predicate is null can be used to check for null
values.
� E.g. Find all loan number which appear in the loan relation

with null values for amount.

select loan-number

from loan

where amount is null

� The result of any arithmetic expression involving
null is null
� E.g. 5 + null returns null

� However, aggregate functions simply ignore nulls

Ordering the output

� List in alphabetic order the names of all customers
having a loan in Powai branch

� select distinct customer-name

from borrower, loan

where borrower loan-number - loan.loan-

number and

branch-name = ‘Powai’

order by customer-name

� We may specify desc for descending order or asc
for ascending order, for each attribute; ascending
order is the default.
� E.g. order by customer-name desc

11

Multi-relation Queries

� Interesting queries often combine data from
more than one relation.

� We can address several relations in one
query by listing them all in the FROM
clause.

� Distinguish attributes of the same name by
“<relation>.<attribute>”

Example

� Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked
by at least one person who frequents Joe’s
Bar.

SELECT beer

FROM Likes, Frequents

WHERE bar = ’Joe’’s Bar’ AND

Frequents.drinker = Likes.drinker;

Formal Semantics

� Almost the same as for single-relation
queries:

1. Start with the product of all the relations
in the FROM clause.

2. Apply the selection condition from the
WHERE clause.

3. Project onto the list of attributes and
expressions in the SELECT clause.

12

Operational Semantics

� Imagine one tuple-variable for each relation
in the FROM clause.

� These tuple-variables visit each combination of
tuples, one from each relation.

� If the tuple-variables are pointing to tuples
that satisfy the WHERE clause, send these
tuples to the SELECT clause.

Example

drinker bar drinker beer

tv1 tv2
Sally Bud

Sally Joe’s

Likes
Frequents

to outputcheck these
are equal

check
for Joe

Explicit Tuple-Variables

� Tuple variables are defined in the from clause

� Case 1: Sometimes, a query needs to use two
copies of the same relation.

� Distinguish copies by following the relation
name by the name of a tuple-variable, in the
FROM clause.

� It’s always an option to rename relations this
way, even when not essential.

13

Example

� From Beers(name, manf), find all pairs
of beers by the same manufacturer.

� Do not produce pairs like (Bud, Bud).

� Produce pairs in alphabetic order, e.g. (Bud,
Miller), not (Miller, Bud).

SELECT b1.name, b2.name

FROM Beers b1, Beers b2

WHERE b1.manf = b2.manf AND

b1.name < b2.name;

Tuple Variables

� Case 2: via the use of the as clause.

� Find the customer names and their loan numbers
for all customers having a loan at some branch.

select customer-name, T.loan-number, S.amount

from borrower as T, loan as S

where T.loan-number = S.loan-number

Tuple variable …

� Find the names of all branches that have
greater assets than some (any ?) branch
located in Delhi.

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and S.branch-

city = ‘Delhi’

14

Union, Intersection, and Difference

� Union, intersection, and difference of
relations are expressed by the following
forms, each involving subqueries:

� (subquery) UNION (subquery)

� (subquery) INTERSECT (subquery)

� (subquery) EXCEPT (subquery)

Set Operations

� Find all customers who have a loan, an account, or
both:

(select customer-name from depositor)

except

(select customer-name from borrower)

(select customer-name from depositor)

intersect

(select customer-name from borrower)

� Find all customers who have an account but no loan.

(select customer-name from depositor)

union

(select customer-name from borrower)

� Find all customers who have both a loan and an account.

Example

� From relations Likes(drinker, beer),
Sells(bar, beer, price), and
Frequents(drinker, bar), find the drinkers
and beers such that:

1. The drinker likes the beer, and

2. The drinker frequents at least one bar that
sells the beer.

15

Solution

(SELECT * FROM Likes)

INTERSECT

(SELECT drinker, beer

FROM Sells, Frequents

WHERE Frequents.bar = Sells.bar

);

The drinker frequents
a bar that sells the
beer.

Bag Semantics

� Although the SELECT-FROM-WHERE
statement uses bag semantics, the default
for union, intersection, and difference is set
semantics.

� That is, duplicates are eliminated as the
operation is applied.

Motivation: Efficiency

� When doing projection, it is easier to
avoid eliminating duplicates.

� Just work tuple-at-a-time.

� For intersection or difference, it is most
efficient to sort the relations first.

� At that point you may as well eliminate the
duplicates anyway.

16

Controlling Duplicate Elimination

� Force the result to be a set by SELECT
DISTINCT . . .

� Force the result to be a bag (i.e., don’t
eliminate duplicates) by ALL, as in . . .
UNION ALL . . .

Example: DISTINCT

� From Sells(bar, beer, price), find all the
different prices charged for beers:

Select DISTINCT price

FROM Sells;

� Notice that without DISTINCT, each price
would be listed as many times as there
were bar/beer pairs at that price.

Example: ALL

� Using relations Frequents(drinker, bar)
and Likes(drinker, beer) - List drinkers
who frequent more bars than they like
beers.

(SELECT drinker FROM Frequents)

EXCEPT ALL

(SELECT drinker FROM Likes);

17

Aggregate Functions

� These functions operate on the multiset of
values of a column of a relation, and return
a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate Functions (Cont.)

� Find the average account balance at the Powai
branch.

� Find the number of depositors in the bank.

� Find the number of tuples in the
customer relation.

select avg (balance)

from account

where branch-name = ‘Powai’

select count (*) from customer

select count (distinct customer-name)
from depositor

Aggregate Functions – Group By

� Partitions table (result) on given attributes; we
can retrieve some aggregate value for each
group

� Find the number of depositors for each branch.

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number

group by branch-name

18

Example: Grouping

� From Sells(bar, beer, price), find the
average price for each beer:

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer;

Example: Grouping

� From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each
drinker the average price of Bud at the
bars they frequent:

Compute
drinker-bar-
price for Bud
tuples first,
then group
by drinker.

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = ’Bud’ AND

Frequents.bar = Sells.bar

GROUP BY drinker;

Restriction on SELECT Lists With
Aggregation

� If any aggregation is used, then each
element of the SELECT list must be either:

1. Aggregated, or

2. An attribute on the GROUP BY list.

19

Illegal Query Example

� You might think you could find the bar
that sells Bud the cheapest by:

SELECT bar, MIN(price)

FROM Sells

WHERE beer = ’Bud’;

� But this query is illegal in SQL because

� Bar is not aggregated or an attribute on
a group by list.

Aggregate Functions – Having
Clause

� Allows us to select a partition based on some
grouping or aggregate value

� Example: Find the names of all branches where
the average account balance is more than
12000.

select branch-name, avg (balance)

from account

group by branch-name

having avg (balance) > 1200

Example: HAVING

� From Sells(bar, beer, price) and
Beers(name, manf), find the average price
of those beers that are either served in at
least three bars or are manufactured by
Pete’s.

20

Solution

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer

HAVING COUNT(bar) >= 3 OR

beer IN (SELECT name

FROM Beers

WHERE manf = ’Pete’’s’);

Beers manu-
factured by
Pete’s.

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Pete’s.

Requirements on HAVING
Conditions

� These conditions may refer to any
relation or tuple-variable in the FROM
clause.

� They may refer to attributes of those
relations, as long as the attribute makes
sense within a group; i.e., it is either:

1. A grouping attribute, or

2. Aggregated.

Subqueries

� A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a
value in a number of places, including
FROM and WHERE clauses.

� Example: in place of a relation in the
FROM clause, we can place another
query, and then query its result.

� Better use a tuple-variable to name tuples
of the result.

21

Subqueries That Return One Tuple

� If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value.

� Usually, the tuple has one component.

� A run-time error occurs if there is no tuple
or more than one tuple.

Example

� From Sells(bar, beer, price), find the
bars that serve Miller for the same price
Joe charges for Bud.

� Two queries would surely work:

1. Find the price Joe charges for Bud.

2. Find the bars that serve Miller at that price.

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND

price = (SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’);
The price at

which Joe
sells Bud

22

The IN Operator

� <tuple> IN <relation> is true if and only

if the tuple is a member of the relation.
� <tuple> NOT IN <relation> means the

opposite.

� IN-expressions can appear in WHERE
clauses.

� The <relation> is often a subquery.

Example

� From Beers(name, manf) and
Likes(drinker, beer), find the name and
manufacturer of each beer that Fred likes.

The set of
beers Fred
likes

SELECT * FROM Beers

WHERE name IN

(SELECT beer

FROM Likes

WHERE drinker = Fred’);

The Exists Operator

� EXISTS(<relation>) is true if and only if

the <relation> is not empty.

� Example: From Beers(name, manf) , find
those beers that are the unique beer by
their manufacturer.

23

Example Query with EXISTS

SELECT name

FROM Beers b1

WHERE NOT EXISTS(

SELECT *

FROM Beers

WHERE manf = b1.manf AND

name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.

Notice the
SQL “not
equals”
operator

The Operator ANY

� x = ANY(<relation>) is a boolean
condition true if x equals at least one tuple
in the relation.

� Similarly, = can be replaced by any of the
comparison operators.

� Example: x >= ANY(<relation>) means
x is not the smallest tuple in the relation.
� Note tuples must have one component only.

Set Comparison with SOME clause

� Find all branches that have greater assets than
some branch located in Delhi.

� Same query using > some clause

select branch-name

from branch

where assets > some

(select assets

from branch

where branch-city = ‘Delhi’)

select distinct T.branch-name
from branch as T, branch as S

where T.assets > S.assets and

S.branch-city = ‘Delhi’

24

Definition of some Clause

� F <comp-op> some r ⇔ ∃ t ∈ r s.t. (F <comp-op> t)
Where <comp-op> can be: <, ≤, >, =, ≠

0
5

6

(5< some) = true

0
5

0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5< some

) = true(5 = some

(= some) ≡ in

However, (≠ some) ≡ not in

The Operator ALL

� Similarly, x <> ALL(<relation>) is true if

and only if for every tuple t in the relation, x
is not equal to t.

� That is, x is not a member of the relation.

� The <> can be replaced by any comparison

operator.

� Example: x >= ALL(<relation>) means

there is no tuple larger than x in the relation.

Example

� From Sells(bar, beer, price), find the
beer(s) sold for the highest price.

price from the outer
Sells must not be
less than any price.

ALL(SELECT price

FROM Sells);

SELECT beer FROM Sells

WHERE price >=

25

Join Expressions

� SQL provides several versions of (bag)
joins.

� These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

Products and Natural Joins

� Natural join:

R NATURAL JOIN S;

� Product:

R CROSS JOIN S;

� Example:
Likes NATURAL JOIN Serves;

� Relations can be parenthesized subqueries, as
well.

Theta Join

� R JOIN S ON <condition>

� Example: using Drinkers(name, addr) and
Frequents(drinker, bar):

Drinkers JOIN Frequents ON

name = drinker;

gives us all (d, a, d, b) quadruples such
that drinker d lives at address a and
frequents bar b.

26

Outerjoins

� R OUTER JOIN S is the core of an
outerjoin expression. It is modified by:

1. Optional NATURAL in front of OUTER.

2. Optional ON <condition> after JOIN.

3. Optional LEFT, RIGHT, or FULL before
OUTER.

� LEFT = pad dangling tuples of R only.

� RIGHT = pad dangling tuples of S only.

� FULL = pad both; this choice is the default.

More SQL

Database Modification

Defining a Database
Schema

Views

Database Modifications

� A modification command does not return
a result (as a query does), but changes
the database in some way.

� Three kinds of modifications:

1. Insert a tuple or tuples.

2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple or
tuples.

27

Insertion

� To insert a single tuple:
INSERT INTO <relation>

VALUES (<list of values>);

� Example: add to Likes(drinker, beer) the
fact that Sally likes Bud.

INSERT INTO Likes

VALUES(’Sally’, ’Bud’);

Specifying Attributes in INSERT

� We may add to the relation name a list of
attributes.

� Two reasons to do so:

1. We forget the standard order of attributes for
the relation.

2. We don’t have values for all attributes, and we
want the system to fill in missing components
with NULL or a default value.

Example: Specifying Attributes

� Another way to add the fact that Sally
likes Bud to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)

VALUES(’Bud’, ’Sally’);

28

Inserting Many Tuples

� We may insert the entire result of a query
into a relation, using the form:

INSERT INTO <relation> (<subquery>);

Example: Insert a Subquery

� Using Frequents(drinker, bar), enter into
the new relation PotBuddies(name) all of
Sally’s “potential buddies,” i.e., those
drinkers who frequent at least one bar that
Sally also frequents.

Solution

INSERT INTO PotBuddies

(SELECT d2.drinker

FROM Frequents d1, Frequents d2

WHERE d1.drinker = ’Sally’ AND

d2.drinker <> ’Sally’ AND

d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Sally,
the second is for
someone else,
and the bars are
the same.

The other
drinker

29

Deletion

� To delete tuples satisfying a condition from
some relation:

DELETE FROM <relation>

WHERE <condition>;

Example: Deletion

� Delete from Likes(drinker, beer) the fact
that Sally likes Bud:

DELETE FROM Likes

WHERE drinker = ’Sally’ AND

beer = ’Bud’;

Example: Delete all Tuples

� Make the relation Likes empty:

DELETE FROM Likes;

� Note no WHERE clause needed.

30

Example: Delete Many Tuples

� Delete from Beers(name, manf) all beers for
which there is another beer by the same
manufacturer.

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b.

DELETE FROM Beers b

WHERE EXISTS (

SELECT name FROM Beers

WHERE manf = b.manf AND

name <> b.name);

Semantics of Deletion --- (1)

� Suppose Anheuser-Busch makes only
Bud and Bud Lite.

� Suppose we come to the tuple b for
Bud first.

� The subquery is nonempty, because of
the Bud Lite tuple, so we delete Bud.

� Now, when b is the tuple for Bud Lite,
do we delete that tuple too?

Semantics of Deletion --- (2)

� Answer: we do delete Bud Lite as well.

� The reason is that deletion proceeds in two
stages:

1. Mark all tuples for which the WHERE condition
is satisfied.

2. Delete the marked tuples.

31

Updates

� To change certain attributes in certain
tuples of a relation:

UPDATE <relation>

SET <list of attribute assignments>

WHERE <condition on tuples>;

Example: Update

� Change drinker Fred’s phone number to
555-1212:

UPDATE Drinkers

SET phone = ’555-1212’

WHERE name = ’Fred’;

Example: Update Several Tuples

� Make $4 the maximum price for beer:

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;

32

Defining a Database Schema

� A database schema comprises declarations
for the relations (“tables”) of the database.

� Several other kinds of elements also may
appear in the database schema, including
views, indexes, and triggers, which we’ll
introduce later.

Creating (Declaring) a Relation

� Simplest form is:
CREATE TABLE <name> (

<list of elements>

);

� To delete a relation:
DROP TABLE <name>;

Elements of Table Declarations

� Most basic element: an attribute and its
type.

� The most common types are:
� INT or INTEGER (synonyms).

� REAL or FLOAT (synonyms).

� CHAR(n) = fixed-length string of n
characters.

� VARCHAR(n) = variable-length string of up
to n characters.

33

Example: Create Table

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL

);

Dates and Times

� DATE and TIME are types in SQL.

� The form of a date value is:

DATE ’yyyy-mm-dd’
� Example: DATE ’2004-09-30’ for Sept. 30,

2004.

Times as Values

� The form of a time value is:

TIME ’hh:mm:ss’

with an optional decimal point and
fractions of a second following.
� Example: TIME ’15:30:02.5’ = two and a

half seconds after 3:30PM.

34

Declaring Keys

� An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE.

� Either says the attribute(s) so declared
functionally determine all the attributes of
the relation schema.

� There are a few distinctions to be
mentioned later.

Declaring Single-Attribute Keys

� Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute.

� Example:
CREATE TABLE Beers (

name CHAR(20) UNIQUE,

manf CHAR(20)

);

Declaring Multiattribute Keys

� A key declaration can also be another
element in the list of elements of a CREATE
TABLE statement.

� This form is essential if the key consists of
more than one attribute.

� May be used even for one-attribute keys.

35

Example: Multiattribute Key

� The bar and beer together are the key for
Sells:

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

PRIMARY KEY (bar, beer)

);

PRIMARY KEY Versus UNIQUE

� The SQL standard allows DBMS
implementers to make their own distinctions
between PRIMARY KEY and UNIQUE.

� Example: some DBMS might automatically
create an index (data structure to speed search)
in response to PRIMARY KEY, but not UNIQUE.

Required Distinctions

� However, standard SQL requires these
distinctions:

1. There can be only one PRIMARY KEY for a
relation, but several UNIQUE attributes.

2. No attribute of a PRIMARY KEY can ever be NULL
in any tuple. But attributes declared UNIQUE
may have NULL’s, and there may be several
tuples with NULL.

36

Some Other Declarations
for Attributes

� NOT NULL means that the value for this
attribute may never be NULL.

� DEFAULT <value> says that if there is no
specific value known for this attribute’s
component in some tuple, use the stated
<value>.

Example: Default Values

CREATE TABLE Drinkers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT ’123 Sesame St.’,

phone CHAR(16)

);

Effect of Defaults --- (1)

� Suppose we insert the fact that Sally is a
drinker, but we know neither her address
nor her phone.

� An INSERT with a partial list of attributes
makes the insertion possible:

INSERT INTO Drinkers(name)

VALUES(’Sally’);

37

Effect of Defaults --- (2)

� But what tuple appears in Drinkers?

name addr phone

Sally 123 Sesame St NULL

� If we had declared phone NOT NULL, this
insertion would have been rejected.

Adding Attributes

� We may add a new attribute (“column”) to
a relation schema by:

ALTER TABLE <name> ADD

<attribute declaration>;

� Example:

ALTER TABLE Bars ADD

phone CHAR(16)DEFAULT ’unlisted’;

Deleting Attributes

� Remove an attribute from a relation
schema by:

ALTER TABLE <name>

DROP <attribute>;

� Example: we don’t really need the license
attribute for bars:

ALTER TABLE Bars DROP license;

38

Views

� A view is a “virtual table” = a relation
defined in terms of the contents of
other tables and views.

� Declare by:
CREATE VIEW <name> AS <query>;

� Antonym: a relation whose value is
really stored in the database is called a
base table.

Example: View Definition

� CanDrink(drinker, beer) is a view
“containing” the drinker-beer pairs such
that the drinker frequents at least one bar
that serves the beer:

CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;

Example: Accessing a View

� Query a view as if it were a base table.

� Also: a limited ability to modify views if it
makes sense as a modification of one
underlying base table.

� Example query:
SELECT beer FROM CanDrink

WHERE drinker = ’Sally’;

39

What happens when a View is
used?

� The DBMS starts by interpreting the query
as if the view were a base table.

� Typical DBMS turns the query into something
like relational algebra.

� The definitions of any views used by the
query are also replaced by their algebraic
equivalents, and “spliced into” the
expression tree for the query.

Example: View Expansion

PROJbeer

SELECTdrinker=‘Sally’

CanDrink

PROJdrinker, beer

JOIN

Frequents Sells

DMBS Optimization

� It is interesting to observe that the
typical DBMS will then “optimize” the
query by transforming the algebraic
expression to one that can be
executed faster.

� Key optimizations:

1. Push selections down the tree.

2. Eliminate unnecessary projections.

40

Example: Optimization

PROJbeer

JOIN

SELECTdrinker=’Sally’ Sells

Frequents

Notice how
most tuples
are eliminated
from Frequents
before the
expensive join.

Constraints

Foreign Keys

Local and Global
Constraints

Triggers

Constraints and Triggers

� A constraint is a relationship among data
elements that the DBMS is required to
enforce.

� Example: key constraints.

� Triggers are only executed when a
specified condition occurs, e.g., insertion
of a tuple.

� Easier to implement than complex constraints.

41

Kinds of Constraints

� Keys.

� Foreign-key, or referential-integrity.

� Value-based constraints.

� Constrain values of a particular attribute.

� Tuple-based constraints.

� Relationship among components.

� Assertions: any SQL boolean expression.

Foreign Keys

� Consider Relation Sells(bar, beer, price).

� We might expect that a beer value is a
real beer --- something appearing in
Beers.name .

� A constraint that requires a beer in Sells
to be a beer in Beers is called a foreign -
key constraint.

Expressing Foreign Keys

� Use the keyword REFERENCES, either:

1. Within the declaration of an attribute (only for
one-attribute keys).

2. As an element of the schema:

FOREIGN KEY (<list of attributes>)

REFERENCES <relation> (<attributes>)

� Referenced attributes must be declared
PRIMARY KEY or UNIQUE.

42

Example: With Attribute

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) REFERENCES

Beers(name),

price REAL);

Example: As Element

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer) REFERENCES

Beers(name));

Enforcing Foreign-Key Constraints

� If there is a foreign-key constraint from
attributes of relation R to a key of relation
S, two violations are possible:

1. An insert or update to R introduces values not
found in S.

2. A deletion or update to S causes some tuples
of R to “dangle.”

43

Actions Taken --- (1)

� Suppose R = Sells, S = Beers.

� An insert or update to Sells that
introduces a nonexistent beer must be
rejected.

� A deletion or update to Beers that
removes a beer value found in some
tuples of Sells can be handled in three
ways

Actions Taken --- (2)

1. Default : Reject the modification.

2. Cascade : Make the same changes in
Sells.

� Deleted beer: delete Sells tuple.

� Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.

Example: Cascade

� Delete the Bud tuple from Beers:

� Then delete all tuples from Sells that have beer
= ’Bud’.

� Update the Bud tuple by changing ’Bud’ to
’Budweiser’:

� Then change all Sells tuples with beer = ’Bud’ so
that beer = ’Budweiser’.

44

Example: Set NULL

� Delete the Bud tuple from Beers:

� Change all tuples of Sells that have beer = ’Bud’
to have beer = NULL.

� Update the Bud tuple by changing ’Bud’ to
’Budweiser’:

� Same change.

Choosing a Policy

� When we declare a foreign key, we may choose
policies SET NULL or CASCADE independently for
deletions and updates.

� Follow the foreign-key declaration by:
ON [UPDATE, DELETE][SET NULL CASCADE]

� Two such clauses may be used.

� Otherwise, the default (reject) is used.

Example

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer)

REFERENCES Beers(name)

ON DELETE SET NULL

ON UPDATE CASCADE

);

45

Attribute-Based Checks

� Constraints on the value of a particular
attribute.

� Add: CHECK(<condition>) to the
declaration for the attribute.

� The condition may use the name of the
attribute, but any other relation or attribute
name must be in a subquery.

Example

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),

price REAL CHECK (price <= 5.00)

);

Timing of Checks

� Attribute-based checks performed only when a
value for that attribute is inserted or updated.

� Example: CHECK (price <= 5.00) checks every

new price and rejects the modification (for that
tuple) if the price is more than $5.

� Example: CHECK (beer IN (SELECT name FROM
Beers)) not checked if a beer is deleted from

Beers (unlike foreign-keys).

46

Tuple-Based Checks

� CHECK (<condition>) may be added
as a relation-schema element.

� The condition may refer to any attribute
of the relation.

� But any other attributes or relations require
a subquery.

� Checked on insert or update only.

Example: Tuple-Based Check

� Only Joe’s Bar can sell beer for more than
$5:
CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

CHECK (bar = ’Joe’’s Bar’ OR

price <= 5.00)

);

Assertions

� These are database-schema elements, like
relations or views.

� Defined by:

CREATE ASSERTION <name>

CHECK (<condition>);

� Condition may refer to any relation or
attribute in the database schema.

47

Example: Assertion

� In Sells(bar, beer, price), no bar may
charge an average of more than $5.

Bars with an
average price
above $5

CREATE ASSERTION NoRipoffBars CHECK (

NOT EXISTS (

SELECT bar FROM Sells

GROUP BY bar

HAVING 5.00 < AVG(price)

));

Example: Assertion

� In Drinkers(name, addr, phone) and
Bars(name, addr, license), there cannot be
more bars than drinkers.

CREATE ASSERTION FewBar CHECK (

(SELECT COUNT(*) FROM Bars) <=

(SELECT COUNT(*) FROM Drinkers)

);

Timing of Assertion Checks

� In principle, we must check every
assertion after every modification to any
relation of the database.

� A clever system can observe that only
certain changes could cause a given
assertion to be violated.

� Example: No change to Beers can affect
FewBar. Neither can an insertion to Drinkers.

48

Triggers: Motivation

� Assertions are powerful, but the DBMS
often can’t tell when they need to be
checked.

� Attribute- and tuple-based checks are
checked at known times, but are not
powerful.

� Triggers let the user decide when to
check for a powerful condition.

Event-Condition-Action Rules

� Another name for “trigger” is ECA rule,
or event-condition-action rule.

� Event : typically a type of database
modification, e.g., “insert on Sells.”

� Condition : Any SQL boolean-valued
expression.

� Action : Any SQL statements.

Preliminary Example: A Trigger

� Instead of using a foreign-key
constraint and rejecting insertions into
Sells(bar, beer, price) with unknown
beers, a trigger can add that beer to
Beers, with a NULL manufacturer.

49

Example: Trigger Definition

CREATE TRIGGER BeerTrig

AFTER INSERT ON Sells

REFERENCING NEW ROW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.beer NOT IN

(SELECT name FROM Beers))

INSERT INTO Beers(name)

VALUES(NewTuple.beer);

The event

The condition

The action

Options: CREATE TRIGGER

� CREATE TRIGGER <name>

� Option:

CREATE OR REPLACE TRIGGER <name>

� Useful if there is a trigger with that name and
you want to modify the trigger.

Options: The Event

� AFTER can be BEFORE.

� Also, INSTEAD OF, if the relation is a view.

• A great way to execute view modifications: have
triggers translate them to appropriate modifications on
the base tables.

� INSERT can be DELETE or UPDATE.

� And UPDATE can be UPDATE . . . ON a particular
attribute.

50

Options: FOR EACH ROW

� Triggers are either “row-level” or
“statement-level.”

� FOR EACH ROW indicates row-level; its
absence indicates statement-level.

� Row level triggers : execute once for
each modified tuple.

� Statement-level triggers : execute once
for an SQL statement, regardless of
how many tuples are modified.

Options: REFERENCING

� INSERT statements imply a new tuple (for
row-level) or new table (for statement-
level).

� The “table” is the set of inserted tuples.

� DELETE implies an old tuple or table.

� UPDATE implies both.

� Refer to these by

[NEW OLD][TUPLE TABLE] AS <name>

Options: The Condition

� Any boolean-valued condition is
appropriate.

� It is evaluated before or after the
triggering event, depending on whether
BEFORE or AFTER is used in the event.

� Access the new/old tuple or set of
tuples through the names declared in
the REFERENCING clause.

51

Options: The Action

� There can be more than one SQL statement
in the action.

� Surround by BEGIN . . . END if there is more
than one.

� But queries make no sense in an action, so
we are really limited to modifications.

Another Example

� Using Sells(bar, beer, price) and a unary
relation RipoffBars(bar) created for the
purpose, maintain a list of bars that raise
the price of any beer by more than $1.

The Trigger

CREATE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

REFERENCING

OLD ROW AS ooo

NEW ROW AS nnn

FOR EACH ROW

WHEN(nnn.price > ooo.price + 1.00)

INSERT INTO RipoffBars

VALUES(nnn.bar);

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars

52

Triggers on Views

� Generally, it is impossible to modify a
view, because it doesn’t exist.

� But an INSTEAD OF trigger lets us
interpret view modifications in a way
that makes sense.

� Example: We’ll design a view Synergy
that has (drinker, beer, bar) triples
such that the bar serves the beer, the
drinker frequents the bar and likes the
beer.

Example: The View

CREATE VIEW Synergy AS

SELECT Likes.drinker, Likes.beer, Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker = Frequents.drinker

AND Likes.beer = Sells.beer

AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

Interpreting a View Insertion

� We cannot insert into Synergy --- it is a
view.

� But we can use an INSTEAD OF trigger to
turn a (drinker, beer, bar) triple into three
insertions of projected pairs, one for each of
Likes, Sells, and Frequents.

� The Sells.price will have to be NULL.

53

The Trigger

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

REFERENCING NEW ROW AS n

FOR EACH ROW

BEGIN

INSERT INTO LIKES VALUES(n.drinker, n.beer);

INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);

INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;

