
1

1

Transactions - ACID

CS 317/387

2

Transactions

� Many enterprises use databases to store information 

about their state

� e.g., Balances of all depositors at a bank

� When an event occurs in the real world that changes the 

state of the enterprise, a program is executed to change 

the database state in a corresponding way

� e.g., Bank balance must be updated when deposit is made

� Such a program is called a transaction 



2

3

What does a Transaction do?

� Update the database to reflect the occurrence of a real 

world event

� Deposit transaction: Update customer’s balance in database 

� Cause the occurrence of a real world event

� Withdraw transaction: Dispense cash (and update customer’s 

balance in database)

� Return information from the database

� RequestBalance transaction: Outputs customer’s balance 

4

A Sample Transaction

1:  Begin_Transaction

2:  get (K1, K2, CHF) from terminal

3:  Select BALANCE Into S1 From ACCOUNT Where ACCOUNTNR = K1;

4:  S1 := S1 - CHF;

5:  Update ACCOUNT Set BALANCE = S1 Where ACCOUNTNR = K1;

6:  Select BALANCE Into S2 From ACCOUNT Where ACCOUNTNR = K2;

7:  S2 := S2 + CHF;

8:  Update ACCOUNT Set BALANCE = S2 Where ACCOUNTNR = K2;

9:  Insert Into BOOKING(ACCOUNTNR,DATE,AMOUNT,TEXT) 

Values (K1, today, -CHF, 'Transfer');

10: Insert Into BOOKING(ACCOUNTNR,DATE,AMOUNT,TEXT) 

Values (K2, today, CHF, 'Transfer');

12: If S1<0 Then Abort_Transaction

11: End_Transaction

Transaction = Program that takes database from one consistent state 

to another consistent state



3

5

So what is the issue?

� System crashes during transaction

� database remains in inconsistent (intermediate) 
state

� solution: recovery

� Multiple transactions executed at same time

� other applications have access to inconsistent 
(intermediate) state

� solution: concurrency control

6

DBMS View

� From the viewpoint of a DBMS, a transaction is a 

sequence of reads and writes that are supposed to make 

consistent transformations of system states while 

preserving system consistency

� Transaction is a “unit of work”, i.e. it must do all the 

work necessary to update the database and maintain 

integrity constraints.



4

7

8

Model for Transactions

� Assumption: the database is composed of 
elements

� Usually 1 element = 1 block

� Can be smaller (=1 record) or larger (=1 
relation)

� Assumption: each transaction reads/writes 
some elements



5

9

Transaction operations

� A user’s program may carry out many operations on the data 
retrieved from DB but DBMS is only concerned about 
Read/Write.

� A database transaction is the execution of a program that include 
database access operations:
� Begin-transaction

� Read

� Write

� End-transaction

� Commit-transaction

� Abort-transaction

� Undo

� Redo

� Concurrent execution of user programs is essential for good 
DBMS performance. 

10

State of a transaction

� Active: the transaction is executing.

� Partially Committed: the transaction ends 
after execution of final statement (“commit 
requested”).

� Committed: after successful completion 
checks.

� Failed: when normal execution can no 
longer proceed.

� Aborted: after the transaction has been 
rolled back. 



6

11

12

Properties of a xAction

� The execution of each transaction must maintain the 

relationship between the database state and the 

enterprise state (at “all”times)

� Therefore additional requirements are placed on the 

execution of transactions beyond those placed on 

ordinary programs:



7

13

ACID Properties

� Atomicity

� Consistency

� Isolation

� Durability

14

ACID Properties

� Atomicity (all or nothing)
� A transaction is atomic: the effect of a transaction on the 

database should be either the effect of executing allits actions, 
or not executing any actions at all.

� Consistency (no violation of integrity constraints)
� A transaction must preserve the consistency of a database 

after execution. (responsibility of the user)

� Isolation (concurrent changes invisible -> serializable)
� Transaction is protected from the effects of concurrently 

executing other transactions.

� Durability (committed updates persist)
� The effect of a committed transaction should persist even in 

the event of system failures such as a crash. 



8

15

Consistency

� Enterprise (Business) Rules limit the occurrence of 
certain real-world events
� Student cannot register for a course if the current number of 

registrants equals the maximum allowed

� Correspondingly, allowable database states are 
restricted, e.g., by
� Current_reg <= max_reg

� These limitations are called (static) integrity 
constraints: assertions that must be satisfied by the 
database state 

16

More on consistency

� Other static consistency requirements are related to the 

fact that the database might store the same information 

in different ways 

� cur_reg= |list_of_registered_students|

� Such limitations are also expressed as integrity constraints

� Database is consistent if all static integrity constraints 

are satisfied 



9

17

More on Consistency

� A consistent database state does not necessarily model 
the actual state of the enterprise
� A deposit transaction that increments the balance by the 

wrong amount maintains the integrity constraint balance ≥0, 
but does not maintain the relation between the enterprise and 
database states

� A consistent transaction maintains database consistency 
and the correspondence between the database state and 
the enterprise state (implements its specification)
� Specification of deposit transaction includes 

• Balance = balance’ + amt_deposit 

• (where  balance′is the initial value of balance)

18

Dynamic Integrity Constraints

� Some constraints restrict allowable state transitions

� A transaction might transform the database from one 

consistent state to another, but the transition might not be 

permissible

� Example: A letter grade in a course (A, B, C, D, F) cannot be 

changed to an incomplete (I)

� Dynamic constraints cannot be checked by examining 

the database state 



10

19

Transaction Consistency

� A transaction is consistent if, assuming the database 

is in a consistent state initially, when the transaction 

completes: 

1. All static integrity constraints are satisfied (constraints 

might have been violated in intermediate states)

� Can be checked by examining a snapshot of the database

2. The new state satisfies the specification of the 

transaction

� Cannot be checked from a database snapshot

3. No dynamic constraints have been violated

� Cannot be checked from a database snapshot 

20

Checking Constraints

� Automatic: Embed constraint in schema.
� CHECK, ASSERTION for static constraints

� TRIGGER for dynamic constraints

� Increases confidence in correctness and decreases 
maintenance costs

� Not always desirable since unnecessary checking (overhead) 
might result in performance degradation

• Deposit transaction modifies balance but cannot violate 
constraint balance ≥0 

� Manual: Perform check in application code.
� Only necessary checks are performed

� Scatters references to constraint throughout application 

� Difficult to maintain as transactions are modified/added 



11

21

Atomicity

� A real-world event either happens or does not happen

� Student either registers or does not register

� Similarly, the system must ensure that either the 

corresponding transaction runs to completion or, if not, 

it has no effect at all

� Not true of ordinary programs. A crash could leave files 

partially updated on recovery 

22

Commit and Abort

� If the transaction successfully completes it is said to 

commit

� The system is responsible for preserving the transaction’s 

results in spite of possible subsequent failures

� If the transaction does not successfully complete, it is 

said to abort

� The system is responsible for undoing, or  rolling back, any 

changes the transaction has made till the point of abort



12

23

Reasons for Aborting

� System crash

� Transaction aborted by system

� Execution cannot be made atomic (e.g., if a site is down in a 

distributed transaction)

� Execution did not maintain database consistency (integrity 

constraint is violated)

� Execution was not isolated

� Resources not available (deadlock)

� Transaction requests to roll back 

24

API for Transactions

� DBMS and TP monitor provide commands for setting 

transaction boundaries. For example:

� begin transaction

� commit

� rollback

� The commit command is a request

� The system might commit the transaction, or it might abort it 

for one of the reasons on the previous slide

� The rollback command will always be executed 



13

25

Durability

� The system must ensure that once a transaction 

commits, its effect on the database state is not lost in 

spite of subsequent failures

� Not true of ordinary programs. A media failure after a 

program successfully terminates could cause the file 

system to be restored to a state that preceded the 

program’s execution 

26

More on Durability

� Database stored redundantly on mass storage devices

� Architecture of mass storage devices affects type of 

media failures that can be tolerated

� Availability: extent to which a (possibly  distributed) system 

can provide service  despite failures

� Non-stop DBMS (mirrored disks)

� Recovery based DBMS (log) 



14

27

Isolation

� Serial Execution: Transactions execute one after the 

other

� Each one starts after the previous one completes.

� The execution of each transaction is isolated from all others.

� If the initial database state and all transactions are consistent, 

all consistency constraints are satisfied and the final database

state will accurately reflect the real-world state, but

� Serial execution is inadequate from a performance 

perspective 

28

Schedules

� Schedule = an interleaving of actions 
(read/write) from a set of transactions, 
where the actions of any single transaction 
are in the original order

� Complete Schedule = add commit or 
abort at end

Initial State of DB + Schedule → Final State of DB



15

29

Serial Schedule

� One transaction at a time, no interleaving

� Final state consistent (if transactions are)

� Different serial schedules give different final 
states

T1: T2:

read(acc1)

acc1 := acc1 + 20

write(acc1)

commit

read(acc1)

read(acc1)

sum := sum + acc1

write(sum)

commit

30

Isolation (2)

� Concurrent execution offers performance benefits:

� A computer system has multiple resources capable of 

executing independently (e.g.,cpu’s, I/O devices), but

� A transaction typically uses only one resource at a time

� Concurrently executing transactions can make effective use 

of the system

� Concurrency is achieved by the DBMS by interleaving 

actions (reads/writes of DB objects) of various 

transactions. 



16

31

Scheduling + CC

32

Issues with Concurrent 
Scheduling

� Concurrent (interleaved) execution of a set of consistent 

transactions offers performance benefits, but might not be correct

� Example: course registration; cur_reg is number of  current 

registrants; 

� operations: read(Attribute: Value), write(Attribute: 

Value) 

T1: r(cur_reg: 29) w(cur_reg: 30)

T2: r(cur_reg:29) w(cur_reg:30)

� Result: Violation of static Integrity constraint of current_reg



17

33

Example

� Consider the following bank transactions:

T1: Begin  A=A+100, B=B-100 END

T2: Begin   A=1.06*A, B=1.06*B END

� Intuitively, the first transaction is transferring $100 from 
B’s account to A’s account. The second is crediting both 
accounts with a 6% interest payment.

� There is no guarantee that T1 will execute before T2 or 
vice-versa, if both are submitted together. 

� However: The net effect should be equivalent to running 
these two transactions serially in some order. 

34

EFFECT: T1, T2

Interleaving 1



18

35

Interleaving 2

EFFECT: T2, T1

36

Interleaving 3

PROBLEM!

Interest for the same
Rs 100 twice!



19

37

Interleaving 4

PROBLEM!

Missing Interest!

38



20

39

Atomicity and Isolation

� Let
T1: r(bal:10) w(bal, 1010)              abort

T2:                                   r(bal, 1010) w(ok) commit

� T1 deposits 1000

� T2 grants credit and commits before T1 completes

� T1 aborts and rolls balance back to $10

� T1 has had an effect even though it aborted! 

40

Concurrency Control

� Transforms arriving schedule into a correct interleaved 

schedule to be submitted to the DBMS

� Delays servicing a request (reordering) -causes a transaction 

to wait

� Refuses to service a request -causes transaction to abort

� Actions taken by concurrency control have 

performance costs 

� Goal is to avoid delaying servicing a request 



21

41

Equivalence

� For interleaved schedules to be correct, they should be 

equivalent to serial schedules in their effect on the database for 

all applications.

� A strong notion of Equivalence (also called Conflict 

Equivalence) is based on the commutativity of operations

� Definition:Database operations p1and p2 commute if, for all 

initial database states, they return the same results and leave the 

database in the same final state when executed in either order. 

42

Commutativity

� Read

� r(x, X)-copy the value of database variable x to local variable 

X

� Write

� w(x, X)-copy the value of local variable Xto database variable 

x

� We use r1(x)and w1(x)to mean a read or write of x by 

transaction T1 



22

43

Commutativity

� P1 commutes with p2 if

� They operate on different data items

• w1(x) commutes with w2(y) and r2(y)

� Both are reads

• r1(x)commutes with r2(x)

� Operations that do not commute conflict

� w1(x) conflicts with w2(x)

� w1(x) conflicts with r2(x)

44

Schedule Equivalence

� An interchange of adjacent operations of different 

transactions in a schedule creates an equivalent

schedule if the operations commute

� S1: T11, pij, pkl, T12

� S2: T11, pkl, pij, T12 such that i  ≠ k 

� Equivalence is transitive: If S1is equivalent to S2 (by a 

series of such interchanges), and S2is equivalent to 

S3,then S1 is equivalent to S3 



23

45

Schedule Equivalence

• S1 and S5 are equivalent
• S5 is the serial schedule T1, T2
• S1 is NOT equivalent to the serial schedule T2, T1

46

Schedule Equivalence

� Theorem-Schedule S1 can be derived from S2 by a 

sequence of commutative interchanges if and only if 

conflicting operations in S1 and S2 are ordered in the 

same way

� Only if: Commutative interchanges do not 

reorder conflicting operations

� If : A sequence of commutative interchanges 

can be determined that takes S1to S2since 

conflicting operations do not have to be 

reordered 



24

47

Conflict Equivalence

� Definition-Two schedules, S1and S2, of the same set 

of operations are conflict equivalent if conflicting 

operations are ordered in the same way in both 

� Or (using theorem) if one can be obtained from the 

other by a series of commutative interchanges 

48

Conflict Serializable

� Definition:A schedule is conflict serializable iff it is 

conflict equivalent to a serial schedule

If in S transactions T1and T2 have several pairs of conflicting 

operations (p 1,1 conflicts with p 2,1 and p 1,2 conflicts with p 2,2) 

then p 1,1 must precede p 2,1 and p 1,2 must precede p 2,2 (or vice 

versa) in order for S to be serializable.



25

49

Serializable Schedules

� By default, “serializable”means “conflict serializable”

� Transactions are totally isolated in a serializable 

schedule

� A schedule is correct for any application if it is a 

serializable schedule of consistent transactions

� The schedule :r1(x) r2(y) w2(x) w1(y) is not serializable 

� Why?

50

Intuition on Serializability

� Because T1 read x before T2 wrote it, T1 must precede 

T2 in any ordering, and because T1 wrote y after T2 

read it, T1 must follow T2 in any ordering ---c learly an 

impossibility



26

51

Isolation

� An interleaved schedule of transactions is isolated if its 

effect is the same as if the transactions had executed 

serially in some order (serializable)

� Serializable schedules are always correct  (if the single 

transactions are correct)

� Serializable is better than serial from a performance 

point of view 

52

Serializability Graph

� Node for each transaction Ti

� Edge from Ti to Tj if there is an action of Ti
that precedes and “conflicts” with an action 
of Tj

� Theorem: A schedule is conflict 
serializable iff its Serializability Graph 
is acyclic.



27

53

Example

conflict

W1(x)

W1(y)

W1(z)

R2(x)

W2(y)

R3(z)

W3(y)

W3(z)

T1 T2 T3

Sconf

R2(x)

W2(y)W3(y)

R3(z)

W3(y)

W3(z)
T1 T2 T3

serializability graph

54



28

55

Recoverability: Schedules with 

Aborted Transactions

• T2 has aborted but has had an indirect effect on the database –

schedule is unrecoverable

•Problem: T1 reads uncommitted data -dirty read

• Solution:A concurrency control is recoverable if it does not 

allow T1 to commit until all other transactions that wrote values 

T1 read have committed.

56

Cascaded Abort

Recoverable schedules solve abort problem but allow cascaded 

abort: abort of one transaction forces abort of another

Better solution: prohibit dirty reads



29

57

Dirty Writes

Dirty write: A transaction writes a data item written by an 

active transaction

Dirty write complicates rollback:

58

Strict Schedules

� Strict schedule: Dirty writes and dirty reads are 

prohibited

� Strict and serializable are two different properties

� Strict, non-serializable schedule

� r1(x) w2(x) r2(y) w1(y) c1c2

� Serializable, non-strict schedule

� w2(x) r1(x) w2(y) r1(y) c1c2



30

59

Concurrency Control

� Concurrency control cannot see entire schedule:

� It sees one request at a time and must decide whether to allow 

it to be serviced

� Strategy: Do not service a request if:

� It violates strictness or serializability, or 

� There is a possibility that a subsequent arrival might cause a 

violation of serializability 

60

Models of Concurrency Control

� Immediate Update

� A write updates a database item

� A read copies value from a database item 

� Commit makes updates durable

� Abort undoes updates

� Deferred Update–(we will likely not discuss this)

� A write stores new value in the transaction’s intentions list 
(does not update database) 

� A read copies value from database or transaction’s intentions 
list

� Commit uses intentions list to durably update database

� Abort discards intentions list 



31

61

Models of Concurrency Control

� Pessimistic

� A transaction requests permission for each database 

(read/write) operation 

� Concurrency control can:

• Grant the operation (submit it for execution)

• Delay it until a subsequent event occurs (commit or abort of 

another transaction), or 

• Abort the transaction

� Decisions are made conservatively so that a commit 

request can always be granted

� Takes precautions even if conflicts do not occur 

62

Models of Concurrency Control

� Optimistic

� Request for database operations (read/write) are always 

granted

� Request to commit might be denied

� Transaction is aborted if it performed a non serializable 

operation

� Assumes that conflicts are not likely

� The earlier it can aborted the better 



32

63

Locking Implementation of an 

Immediate-Update Pessimistic Control

� A transaction can read a database item if it holds a read 

(shared) lock on the item

� It can read or update the item if it holds a write 

(exclusive) lock

� If the transaction does not already hold the required 

lock, a lock request is automatically made as part of the 

access 

64

Locking

� Request for read lock granted if no transaction currently 

holds write lock on item

� Cannot read an item written by an active transaction

� Request for write lock granted if no transaction holds 

any lock on item

� Cannot write an item read/written by an active transaction

All locks held by a transaction are released when the 

transaction completes (commits or aborts)



33

65

Locking

� Result: A lock is not granted if the requested access 

conflicts with a prior access of an active transaction; 

instead the transaction waits. This enforces the rule:

� Do not grant a request that imposes an ordering among active 

transactions (delay the requesting transaction)

� Resulting schedules are serializable and strict 

66

Deadlocks

� Problem: Controls that cause transactions to wait can 

cause deadlocks

� w1(x)  w2(y) request_r1(y) request_r2(x)

� Solution: Abort a transaction in the cycle 

� Prevent Deadlock -based on timestamps priorities

� Detect Deadlock -by detecting a cycle in the wait-for graph 

when a request is delayed

� Time-Out -Assume a deadlock when a transaction waits 

longer than some time-out period 



34

67

Deadlock Prevention based on 

Timestamp Priorities

� Assign priorities based on timestamps (i.e., the older a 
transaction, the higher its priority). 

� Assume Ti wants a lock that conflicts with a lock that 
Tj holds. Two policies are possible:
� Wait-Die: If Ti has higher priority, Ti allowed to wait for Tj; 

otherwise (i.e., Ti younger): Ti aborts

� Wound-wait: If Ti has higher priority, Tj aborts; otherwise 
(i.e., Ti younger): Ti waits

� If a transaction re-starts, make sure it has its original 
timestamp 

68

Deadlock prevention based on 
timeouts

� A simple approach to deadlock resolution (pseudo 

prevention/detection) is based on lock request timeouts

� After requesting a lock on a locked data object, a 

transaction waits, but if the lock is not granted within a 

certain period, a deadlock is assumed and the waiting 

transaction is aborted and re-started. 

� Very simple practical solution adopted by many

DBMSs. 



35

69

Wait-for Graphs – Deadlock 
Detection

� Create a waits-for graph:

� Nodes are transactions

� There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock.

� Deadlock exists if there is a cycle in the graph.

� Periodically check for cycles in the waits-for graph.

70

Two Phase Locking

� Transaction does not release a lock until it has all the 
locks it will ever require.

� Transaction, T, has a locking phase followed by an 
unlocking phase 



36

71

Two Phase Locking

� A schedule produced by a two-phase locking control is:

� Equivalent to a serial schedule in which transactions are 

ordered by the time of their first unlock operation

� Not necessarily recoverable (dirty reads and writes are 

possible)

72

Lock Granularity

� Data item: variable, record, row, table, file

� When an item is accessed, the DBMS locks an entity 

that contains the item. The size of that entity 

determines the granularity of the lock 

1. Coarse granularity (large entities locked) 

� Advantage: If transactions tend to access multiple items in 

the same entity, fewer lock requests need to be processed 

and less lock storage space required

� Disadvantage:Concurrency is reduced since some items are 

unnecessarily locked

2. Fine granularity (small entities locked) 

� Advantages and disadvantages are reversed 



37

73

Granularity

� Table locking (coarse) 

� Lock entire table when a row is accessed.

� Row (tuple) locking (fine) 

� Lock only the row that is accessed.

� Page locking (compromise) 

� When a row is accessed, lock the containing page 

74

Optimistic Concurrency Control

� No locking (and hence no waiting) means deadlocks are 

not possible

� Rollback is a problem if optimistic assumption is not 

valid: work of entire transaction is lost

� With two-phase locking, rollback occurs only with deadlock

� With optimistic concurrency control, rollback is only detected 

before transaction completes 



38

75

Locking in RDBMS

� In the simple databases we have been studying, 

accesses are made to a named item, x, (for example 

r(x)),which can be locked.

� In relational databases, accesses are made to items that 

satisfy a predicate (for example, the set of rows 

returned by a SELECT statement)

� What should we lock?

� What is a conflict? 

76

Locking in RDBMS

• Operations on Accounts and Depositors conflict

• Interleaved execution is not serializable 



39

77

What do we lock?

� Lock tables: 

� Execution is serializable but ...

� Performance suffers because lock granularity is coarse

� Lock rows:

� Performance improves because lock granularity is fine but ...

� Execution is not serializable 

78

Problems with Row locking

� Audit 
(1) Locks and reads Mary’s rows in Accounts

� NewAccount
(2) Inserts and locks new row,t, in Accounts 

(3) Locks and updates Mary’s row in Depositors 

(4) Commits and releases all locks

� Audit 
(5) Locks and reads Mary’s row in Depositors



40

79

� Two SELECTs executed by Audit see inconsistent data

� The second sees effect of NewAccount; the first does not

� Problem: Audit’s SELECT and NewAccount’s INSERT 

on Accounts do not commute, but the row locks held by 

Audit did not prevent NewAccount from INSERTing t, 

(which satisfies the WHERE condition).

� t is referred to as a phantom 

80

Phantoms
•Phantoms occur when row locking is used and 

•T1 SELECTs, UPDATEs, or DELETEs using a predicate, P

•T2 creates a row (using INSERT or UPDATE) satisfying P



41

81

Preventing Phantoms

� Table locking does it; row locking does not

� Predicate locking does it

� A predicate describes a set of rows, some are in a table and 

some are not; e.g. name = ‘Mary’

� Every SQL statement has an associated predicate

� When executing a statement, acquire a (read or write) lock on 

the associated predicate

� Two predicate locks conflict if one is a write and there might 

be a row (not necessarily in the table) that is contained in both 

sets of tuples described by the predicates 

82

Preventing Phantoms

• Audit gets read lock on predicate name=‘Mary’.

• NewAccount requests a write lock on predicate 

(acctnum=‘123’∧name=‘Mary’∧bal=100)

• Request denied since predicates overlap 



42

83

Preventing Conflicts with 
Predicate Locks

•Statements conflict since predicates overlap

•There might be an account with bal < 1 and name = ‘Mary’

•Locking is conservative: there might be no rows in Accounts 

satisfying both predicates SELECT 

84

Another Example

• Statements commute since predicates are disjoint.

• There can be no rows (in or not in Accounts) that satisfy both

predicates



43

85

Serializability in Relational DBs

� Predicate locking prevents phantoms and produces serializable 

schedules, but is very complex

� Table locking prevents phantoms and produces serializable 

schedules, but seriously affects performance

� Row locking does not prevent phantoms and can produce non-

serializable schedules

� SQL defines several Isolation Levels weaker than 

SERIALIZABLE that allow non-serializable schedules and hence 

allow more concurrency 

86

Weakening Serializability

� Weaker isolation levels: 

1. REPEATABLE READ, 

2. READ COMMITTED, 

3. READ UNCOMMITTED

� Increase performance by eliminating overhead and 

allowing higher degrees of concurrency

� Trade-off: sometimes you get the .wrong. answer



44

87

Example

CREATE TABLE Account

(accno INTEGER NOT NULL PRIMARY KEY,

name CHAR(30) NOT NULL,

balance FLOAT NOT NULL CHECK(balance >= 0));

88

Read Uncommitted

� Can read dirty data

� A data item is dirty if it is written by an uncommitted 

transaction

� Problem: What if the transaction that wrote the dirty 

data eventually aborts?

� Example: wrong average



45

89

READ Committed

� No dirty reads, but non-repeatable reads possible

� Reading the same data item twice can produce different 

results

� Example: different averages

-- T1: -- T2:

SELECT AVG(balance)    FROM Account;

UPDATE Account

SET balance = balance . 200

WHERE accno = 142857;

COMMIT;

SELECT AVG(balance)   FROM Account;

COMMIT;

90

Repeatable Read

� Reads are repeatable, but may see phantoms

� Example: different average (still!)

T1: T2:

SELECT AVG(balance) FROM Account;

INSERT INTO Account

VALUES(428571, 1000);

COMMIT;

SELECT AVG(balance) FROM Account;

COMMIT



46

91

Isolation levels compared

92

Summary

� Application programmer is responsible for creating 

consistent transactions

� DBMS and TP monitor are responsible for creating the 

abstractions of atomicity, durability, and isolation

� This greatly simplifies programmer’s task since he or 

she does not have to be concerned with failures or 

concurrency 


