
1

1

Transactions – Recovery

CS 317/387

2

ACID Properties and Recovery

� The Recovery Manager is responsible for ensuring

Atomicity and Durability.

� Atomicity is guaranteed by undoing the actions of the

transactions that did not commit (aborted).

� Durability is guaranteed by making sure that all actions

of committed transactions survive crashes and failures.

2

3

Types of Failures

� System crashes
� due to hardware or software errors

� main memory content is lost

� Transaction failures
� overflow, interrupt, data not available, explicit rollback, concurrency

enforcement, programming errors

� no memory loss.

� Media failures

� problems with disk head, unreadable media surface

� (parts of) information on secondary storage may be lost

� Natural disasters

� fire, flood, earthquakes, theft, etc.

� physical loss of all information on all media

4

Strategy

� If a transaction Ti is aborted (e.g., for concurrency

control reasons), all its actions have to be undone.

� Active transactions at the time of the crash have to be

aborted, i.e., their effects have to be undone when the

system comes back.

� DBMS has to maintain enough information to undo

actions of transactions (the LOG File)

3

5

Desired Behavior after system restarts:

T1, T2 & T3should be durable.–

T4 & T5 should be rolled back, i.e., effects undone.

6

Log

� Sequence of records (sequential file)

� Modified by appending (no updating)

� Contains information from which database can be restored

� Log and database stored on different mass storage devices

� Often replicated to survive single media failure

� Contains valuable historical data not in database

� How did database reach current state?

4

7

� Each modification of the database causes an update

record to be appended to log

� Update record contains:

� Identity of data item modified

� Identity of transaction (tid) that did the modification

� Before image(undo record) -value of data item before update

occurred

� Referred to as physical logging

8

Log file example

5

9

Transaction Abort using Logs

� Scan log backwards using tid to identify transaction’s
update records

� Reverse each update using before image

� In a strict system new values unavailable to concurrent
transactions (as a result of long term exclusive locks);
hence rollback makes transaction atomic

� Problem: terminating scan (log can be long)

� Solution: append begin record containing tid prior to
first update record

10

Transaction Abort Using Log

B – Begin record
U – update record

Scan back to Begin record to abort a transaction

6

11

Crash Recovery using Logs

� Abort all transactions active at time of crash

� Problem: How do you identify them?

� Solution: abort record or commit record appended to

log when transaction terminates

� Recovery Procedure:

1. Scan log backwards

2. If first of T’s records is update record, T was active at

time of crash. Roll it back

3. Transaction not committed until commit record in log

12

T1and T3 were not active at time of crash

B – Begin Record
U – Update Record
C – Commit
A - Abort

7

13

Crash Recovery

� Problem: Scan must retrace entire log

� Solution: Periodically append checkpoint record to log.

Contains tid’s of all active transactions at time of

append

� Backward scan goes at least as far as last checkpoint record

appended

� Transactions active at time of crash determined from log

suffix that includes last checkpoint record

� Scan continues until those transactions have been rolled back

14

Checkpoints

Crash

T1, T3 and T6 Active at time of crash

8

15

Write Ahead Logging
When x is updated two writes must occur: update x in database,

append of update log record

Which goes first?

16

Write Ahead Logging

� An update record must always be appended to the Log

before the database is updated on disk.

� The Write-Ahead Logging Protocol

� Force the log record for an update before the

corresponding data page gets to disk.

� Guarantees Atomicity
.

9

17

Performance Issues

� Problem: two I/O operations for each database update

� Solution: log buffer in main memory

� Extension of log on mass store

� Periodically flushed to mass store

� Flush cost pro-rated over multiple log appends

18

Performance Concerns

� Problem: one I/O operation for each database access

� Solution: database page cache in main memory

� Page is unit of transfer

� Page containing requested item brought to cache; then copy

of item transferred to application

� Retain page in cache for future use

� Check cache for requested item before doing I/O (I/O can be

avoided)

10

19

Architecture

Read/Write
From/To
Disk

Persistent storage,

•loses content only if media fails

or is otherwise lost

•Contains DB and Transaction Log

•Disks and other Media

•volatile memory, loses content if system

crashes

=> DB Cache & Log Buffer may be lost.

•Different strategies for the Interaction

Buffer Manager ↔Recovery Manager

20

The Role of the Database Buffer

in Main Memory

� Database pages are read from disk, if needed, and put into the

cache in main memory. They stay there until explicitly written

back to disk.

� Read and Write operations of transactions are executed on pages

in the cache! Cache pages that have been updated are marked

dirty; others are clean.

� Changed pages may be kept in the buffer (for efficiency)

� Update of the page is not reflected on disk immediately (saves write

access to the disc)

� Other transaction can read the value from the buffer (saves read access to

the disc)

� Cache can hold several pages, but ultimately fills

� Clean pages can simply be overwritten

� Dirty pages must be written to DB before page frame can be reused

11

21

What about Atomicity and
Durability?

� Problem: page and log buffers are volatile

� Their use affects the time data becomes non-volatile

� Complicates algorithms for atomicity and durability

22

Illustrated

Assume Td is the last time point before a crash at Tc

where all changes to the DB were definitely reflected
on disk.
⇒T2 and T3 made it to disk before Td

⇒T1 and T6 are not committed at Tc and have to be undone

⇒T4 and T5 committed before the crash, but some of their changes may

have been only to the volatile database buffer and may not be reflected on

disk; some of the changes of T4 may already be reflected on disk

12

23

Atomicity and Durability with

Buffering

� Requirements:

� Write-ahead feature (move update records to log before

database is updated) is necessary to preserve atomicity

� New values written by a transaction must be on mass store

when its commit record is written to log (move new values to

mass store before commit record) to preserve durability

� Solution:requires new mechanisms

24

One solution

� Forced vs. Unforced Writes:

� On database page –

• Unforced write updates cache copy, marks it as dirty and

returns control immediately.

• Forced write updates cache copy, marks it as dirty, uses it to

update database page on disk, and returns control when I/O

completes.

� On log –

• Unforced append adds record to log buffer and returns control

immediately.

• Forced append, adds record to log buffer, writes buffer to log,

and returns control when I/O completes

13

25

Solution 2

� Log Sequence Number (LSN):

� Log records are numbered sequentially

� Each database page contains the LSN of the update record

describing the most recent update of any item in the page

26

Preserving Atomicity: the Write-

Ahead Property and Buffering

� Problem: When the cache page replacement algorithm

decides to write a dirty page, p, to mass store, an update

record corresponding to p might still be in the log

buffer.

� Solution: Force the log buffer if the LSN stored in p is

greater than or equal to the LSN of the oldest record in

the log buffer. Then write p. This preserves write-ahead

policy.

14

27

Preserving Durability

� Problem: Pages updated by T might still be in cache

when T’s commit record is appended to log buffer.

� Solution: Update record contains after image(called a

redo record) as well as before image

� Write-ahead property still requires that update record be

written to mass store before page

� But it is not necessary to force dirty pages when commit

record is written to log on mass store (no-force policy) since

all after images precede commit record in log

28

No Force Commit Processing

1. Force the log buffer (immediate commit)

� Log contains both T’s update records and its commit

record

� update records precede commit record in log buffer,

ensuring transaction’s updates are durable before (or

at the same time as) commit

2. T’s dirty pages can be flushed from cache at any time

after update records have been written

� Necessary for write-ahead policy

� Dirty database pages can be written before or after

commit record

15

29

30

No Force Policy

� Advantages:

� Commit does not have to wait while dirty pages are forced

� Pages with hotspots do not have to be written out as

frequently

� Disadvantage:

� Crash recovery complicated: some updates of committed

transactions (contained in redo records) might not be in

database on restart after crash

� Update records are larger

16

31

Recovery with a No Force
Policy

� Problem: When a crash occurs there might exist

� Some pages in database containing updates of uncommitted

transaction: they must be rolled back

� Some pages in database that do not (but should) contain the

updates of committed transactions: they must be rolled

forward

� Solution: Use a sharp checkpoint(all dirty pages are

forced to disk at checkpoint)

32

17

33

ARIES

� A recovery algorithm that works with the steal/no-force strategy

(called ARIES) has 3 Passes:

1. Analysis: Scan the log backward to the most recent sharp

checkpoint to identify all transactions that were active, and all

dirty pages in the buffer pool at the time of the crash.

2. Redo: The log is scanned forward (replayed) from the

checkpoint to ensure that logged updates are in fact carried out

and written to disk.

3. Undo: The writes of all transactions that were active at the crash

are undone (by restoring the before image of the update),

working backwards in the log. (Some care must be taken to

handle the case of a crash occurring during the recovery

process!)

