
1

Introduction to XML

CS 317/387

2

Agenda – Introduction to
XML

1. What is it?

2. What’s it good for?

3. How does it work?

4. The infrastructure of XML

5. Using XML on the Web

6. Implementation issues & costs

3

1. What is it?

Discussion points:

� First principles: OHCO

� Example: A simple XML fragment

� Compare/contrast: SGML, HTML,
XHTML

� A different XML for every community

� Terminology

2

4

Ordered hierarchies of
content objects

� Premise: A text is the sum of its component
parts
� A <Book> could be defined as containing:
<FrontMatter>, <Chapter>s, <BackMatter>

� <FrontMatter> could contain:
<BookTitle> <Author>s <PubInfo>

� A <Chapter> could contain:
<ChapterTitle> <Paragraph>s

� A <Paragraph> could contain:
<Sentence>s or <Table>s or <Figure>s …

� Components chosen should reflect
anticipated use

5

Ordered hierarchies of
content objects

� OHCO is a useful, albeit imperfect, model

� Exposes an object’s intellectual structure

� Supports reuse & abstraction of components

� Better than a bit-mapped page image

� Better than a model of text as a stream of
characters plus formatting instructions

� Data management system for document-like
objects

� Does not allow overlapping content objects

� Incomplete; requires infrastructure

6

Content objects in a book
Book

FrontMatter

BookTitle

Author(s)

PubInfo

Chapter(s)

ChapterTitle

Paragraph(s)

BackMatter

References

Index

3

7

Content objects in a catalog
card

Card

CallNumber

MainEntry

TitleStatement

TitleProper

StatementOfResponsibility

Imprint

SummaryNote

AddedEntrySubject(s)

Added EntryPersonalName(s)

8

Semistructured Data

� Another data model, based on
trees.

� Motivation: flexible representation
of data.
� Often, data comes from multiple
sources with differences in notation,
meaning, etc.

� Motivation: sharing of documents
among systems and databases.

9

Graphs of Semistructured Data

� Nodes = objects.

� Labels on arcs (attributes, relationships).

� Atomic values at leaf nodes (nodes with
no arcs out).

� Flexibility: no restriction on:

� Labels out of a node.

� Number of successors with a given label.

4

10

Example: Data Graph

Bud

A.B.

Gold1995

MapleJoe’s

M’lob

beer beer
bar

manfmanf

servedAt

name

name
name

addr

prize

year award

root

The bar object

for Joe’s Bar

The beer object

for Bud

Notice a

new kind
of data.

11

XML

� XML = Extensible Markup Language.

� While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).

� Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

12

A simple XML fragment
<Book>
<FrontMatter>
<BookTitle>XML Is Easy</BookTitle>
<Author>Tim Cole</Author>
<Author>Tom Habing</Author>
<PubInfo>CDP Press, 2002</PubInfo>

</FrontMatter>
<Chapter>
<ChapterTitle>First Was SGML</ChapterTitle>
<Paragraph>Once upon a time …</Paragraph>

</Chapter>
</Book>

5

13

This is NOT XML
<PoemFragment>

<Stanza>

<Line><Sentence>It was six men of
Indostan</Line>

<Line>To learning much inclined,</Line>

<Line>Who went to see the Elephant</Line>

<Line>(Though all of them were blind),</Line>

<Line>That each by observation</Line>

<Line>Might satisfy his
mind.</Sentence></Line>

</Stanza>

</PoemFragment>

14

XML comes from SGML

� Standard Generalized Markup Language

� Based on IBM’s GML (Goldfarb, et al.)

� ISO standard since 1989

� Used for large-scale document management
(Boeing 747 user’s manual)

� Expensive, complex to implement

� Not Web-friendly (no “well-formed” SGML)

� Too many options (e.g., tag minimization)

15

XML, HTML, & XHTML
� HTML—display-oriented, SGML-based
scheme for making Web pages
� Syntax & allowed elements (semantics) are
fixed

� XML—set of rules for defining markup
schemes
� Element set is fully extensible

� Syntax is fixed

� XHTML—HTML modified to be XML-
compliant (not just SGML-compliant)

6

16

Markup languages
compared

� XML syntax is stricter than HTML or SGML
� Must explicitly close all elements

� Attributes must be enclosed in quotes

� All markup is case-sensitive

� XML & SGML: no fixed tags, no
predefined style

� XML & SGML are extensible
� Fixed elements (HTML) vs. rules (XML, SGML)

� HTML elements describe how to present
content

� XML elements can describe the content itself

17

A different XML for every
community

� XML is a set of rules used for defining &
encoding intellectual structures

� XML is extensible & customizable

� Its greatest strength

� Its greatest weakness

� HTML was invented by physicists

� What if it had been lawyers, or teachers, or
bureaucrats, or librarians, or …?

18

Terminology

� Document instance

� Document class

� Document Type Definition (DTD), or
schema

� Well-formed XML

� Valid XML

� Stylesheets

� XML Transformations

� Document Object Model (DOM)

7

19

2. What’s it good for?

� Smarter documents

� Full text

� Metadata

� Machine-to-machine interactions

20

Smarter documents

� Standards-based

� Facilitates…

� Search & discovery
• Precise, field-specific searching

� Interoperability & normalization

� Complex transformations

� Linking between and within texts

� Reuse of documents and fragments

21

Smarter documents

8

22

Full text

� Electronic Text Center (U of VA Library)
� Originally SGML, now also XML, eBooks

� 70,000 texts; 350,000 related images

� 37,000 visits to collection per day

� http://etext.lib.virginia.edu/

� Open eBook Forum
� International trade & standards organization

� Goal: establish specs & stds for epublishing

� http://www.openebook.org/

23

Using XML for full text

� No inherent presentation information
� Requires…

• CSS in XML-aware browsers, or

• XSLT to transform to XHTML, or

• XSL-FO to reformat for presentation

� Techniques for including non-text content
vary by application

� XML can be verbose

� Most standard full-text schemas are
complex

24

Metadata
� XML schemas exist for a range of
metadata standards

� Encoded Archival Description (EAD)

� MARC 21 XML (also MODS)

� Metadata Encoding & Transmission Standard
(METS)

� Dublin Core Variants

• Open Archives Initiative (OAI)

• National Science Digital Library (NSDL)

� Resource Description Framework (RDF)

9

25

Using XML for metadata

� Consistency in applying schema
� Optional versus required elements

� Consistent use of elements

� Granularity & depth of information

� XML schemas still evolving
� Attributes versus elements

� Mixing namespaces

� Schema languages

� Philosophical issues

26

Machine-to-machine
interactions

� Web services
� Facilitating machine-to-machine
communications
via XML

� Simple Object Access Protocol (SOAP)

� XML Protocol Working Group

� Semantic Web
� Abstract representation of data on the Web

� XML and Databases

27

3. How does it work?

In XML, there’s content and there’s
markup.

� Markup
� Elements

� Attributes

� Comments

� Processing instructions

� Content
� Entities

� Encoded (Unicode) characters

10

28

Well-Formed and Valid XML

� Well-Formed XML allows you to
invent your own tags.

� Similar to labels in semistructured data.

� Valid XML involves a DTD
(Document Type Definition), a
grammar for tags.

29

Well-Formed XML

� Start the document with a declaration,
surrounded by <?xml … ?> .

� Normal declaration is:

<?xml version = “1.0” standalone =

“yes” ?>

� “Standalone” = “no DTD provided.”

� Balance of document is a root tag
surrounding nested tags.

30

Tags

� Tags, as in HTML, are normally
matched pairs, as <FOO> …
</FOO> .

� Tags may be nested arbitrarily.

� XML tags are case sensitive.

11

31

Example: Well-Formed XML

<?xml version = “1.0” standalone = “yes” ?>

<BARS>

<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> …

</BARS>

A NAME
subobject

A BEER
subobject

32

XML and Semistructured
Data

� Well-Formed XML with nested tags is
exactly the same idea as trees of
semistructured data.

� We shall see that XML also enables
nontree structures, as does the
semistructured data model.

33

Example

� The <BARS> XML document is:

Joe’s Bar

Bud 2.50 Miller 3.00

PRICE

BAR

BAR

BARS

NAME . . .

BAR

PRICE
NAME

BEER
BEER

NAME

12

34

DTD Structure

<!DOCTYPE <root tag> [

<!ELEMENT <name>(<components>)>

. . . more elements . . .

]>

35

DTD Elements

� The description of an element
consists of its name (tag), and a
parenthesized description of any
nested tags.
� Includes order of subtags and their
multiplicity.

� Leaves (text elements) have
#PCDATA (Parsed Character DATA)
in place of nested tags.

36

Example: DTD

<!DOCTYPE BARS [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

A BARS object has
zero or more BAR’s

nested within.

A BAR has one

NAME and one
or more BEER

subobjects.

A BEER has a
NAME and a

PRICE.
NAME and PRICE
are text.

13

37

Element Descriptions

� Subtags must appear in order
shown.

� A tag may be followed by a symbol
to indicate its multiplicity.
� * = zero or more.

� + = one or more.

� ? = zero or one.

� Symbol | can connect alternative
sequences of tags.

38

Example: Element
Description

� A name is an optional title (e.g.,
“Prof.”), a first name, and a last
name, in that order, or it is an IP
address:

<!ELEMENT NAME (

(TITLE?, FIRST, LAST) | IPADDR

)>

39

Use of DTD’s

1. Set standalone = “no”.

2. Either:

a) Include the DTD as a preamble of the
XML document, or

b) Follow DOCTYPE and the <root tag>
by SYSTEM and a path to the file
where the DTD can be found.

14

40

Example (a)
<?xml version = “1.0” standalone = “no” ?>

<!DOCTYPE BARS [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

<BARS>

<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> …

</BARS>

The DTD

The document

41

Example (b)

� Assume the BARS DTD is in file bar.dtd.
<?xml version = “1.0” standalone = “no” ?>

<!DOCTYPE BARS SYSTEM “bar.dtd”>

<BARS>

<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> …

</BARS>

Get the DTD

from the file

bar.dtd

42

Attributes

� Opening tags in XML can have
attributes.

� In a DTD,

<!ATTLIST E . . . >

declares an attribute for element E,
along with its datatype.

15

43

Example: Attributes

� Bars can have an attribute kind, a

character string describing the bar.

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR kind CDATA

#IMPLIED>
Character string
type; no tags

Attribute is optional
opposite: #REQUIRED

44

Example: Attribute Use

� In a document that allows BAR tags, we
might see:

<BAR kind = “sushi”>

<NAME>Akasaka</NAME>

<BEER><NAME>Sapporo</NAME>

<PRICE>5.00</PRICE></BEER>

...

</BAR>

Note attribute
values are quoted

45

ID’s and IDREF’s

� Attributes can be pointers from one
object to another.

� Compare to HTML’s NAME = “foo” and
HREF = “#foo”.

� Allows the structure of an XML
document to be a general graph,
rather than just a tree.

16

46

Creating ID’s

� Give an element E an attribute A of
type ID.

� When using tag <E > in an XML
document, give its attribute A a
unique value.

� Example:

<E A = “xyz”>

47

Creating IDREF’s

� To allow objects of type F to refer
to another object with an ID
attribute, give F an attribute of type
IDREF.

� Or, let the attribute have type
IDREFS, so the F –object can refer
to any number of other objects.

48

Example: ID’s and IDREF’s

� Let’s redesign our BARS DTD to include
both BAR and BEER subelements.

� Both bars and beers will have ID
attributes called name.

� Bars have SELLS subobjects, consisting of
a number (the price of one beer) and an
IDREF theBeer leading to that beer.

� Beers have attribute soldBy, which is an
IDREFS leading to all the bars that sell it.

17

49

The DTD
<!DOCTYPE BARS [

<!ELEMENT BARS (BAR*, BEER*)>

<!ELEMENT BAR (SELLS+)>

<!ATTLIST BAR name ID #REQUIRED>

<!ELEMENT SELLS (#PCDATA)>

<!ATTLIST SELLS theBeer IDREF
#REQUIRED>

<!ELEMENT BEER EMPTY>

<!ATTLIST BEER name ID #REQUIRED>

<!ATTLIST BEER soldBy IDREFS
#IMPLIED>

]>

Beer elements have an ID attribute called name,

and a soldBy attribute that is a set of Bar names.

SELLS elements
have a number

(the price) and

one reference
to a beer.

Bar elements have name
as an ID attribute and

have one or more

SELLS subelements.

Explained

next

50

Example Document

<BARS>

<BAR name = “JoesBar”>

<SELLS theBeer =
“Bud”>2.50</SELLS>

<SELLS theBeer =
“Miller”>3.00</SELLS>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar

SuesBar …”/> …

</BARS>

51

Empty Elements

� We can do all the work of an
element in its attributes.

� Like BEER in previous example.

� Another example: SELLS elements
could have attribute price rather

than a value that is a price.

18

52

Example: Empty Element

� In the DTD, declare:

<!ELEMENT SELLS EMPTY>

<!ATTLIST SELLS theBeer IDREF
#REQUIRED>

<!ATTLIST SELLS price CDATA
#REQUIRED>

� Example use:

<SELLS theBeer = “Bud” price = “2.50”/>
Note exception to
“matching tags” rule

53

Elements

Elements are markup that enclose content

� <element_name>…</element_name>
or <element_name />

� Content models

� Parsed Character Data Only

� Child Elements Only

� Mixed

<author>Narayan, RK</author>

54

Attributes
Associate a name-value pair with an
element

� <tag name1="value1"
name2='value2'>…</tag>

� Can be used to embellish content…

� or to associate added content to an element

<author order='1'>Narayan,
RK</author>

<author name= ‘Desai, Kiran' />

19

55

Comments

Human-readable annotations

� Can be inserted anywhere after headers

� Not part of the document structure

� Usually ignored by XML parsers

� Do not have to be passed to application

<!-- This is a comment -->

56

Processing instructions

Machine-readable & application-specific

� Must be passed through by XML Parsers

� XML Declaration is a special PI

� XML Declaration is always first line in file

<?xml version='1.0' encoding='UTF-8' ?>

<?MyApp indent='on' linefeeds='off' ?>

57

Entities
� Placeholders for internal or external
content
� Placeholder for a single character…

� or string of text…

� or external content (images, audio, etc.)

� Implementation specifics may vary

<!ENTITY copyright "©" >

©right; is replaced by ©

<!ENTITY pic SYSTEM "mugshot.gif" NDATA gif >

&pic; is replaced by graphic image

20

58

Character Encoding Issues
� XML Parsers must accept UTF-8 & UTF-16

� Also must accept &#nnnn; or &#xhhhh;

� MARC-8 encodings must be converted to
Unicode for use in XML

http://lcweb.loc.gov/marc/specifications/specchartab
les.html

59

4. The infrastructure of
XML

� Required to make it work…
� DTDs & schemas: defining
document classes

� Reusing & integrating schemas
(using namespaces)

� Stylesheets for presentation
& transformation

� Standards for linking, querying,
& pointing

� Programming standards

60

Defining Document Classes
� Formal descriptions of document structure

� Set expectations

� Maximize reusability

� Enforce business rules

� DTDs

� XML Schema

� Schematron

� Relax NG

21

61

Document Type Definitions
(DTD)

� Legacy from SGML; part of XML standard

<!DOCTYPE Book SYSTEM 'http://…'>

<!ELEMENT Book (Front, Chapter+, Back?)>

<!ATTLIST Book

type (series|monograph) #REQUIRED>

62

XML schema language
� New in XML

� Uses XML syntax

� Supports datatyping

� Richer and more complex

<book xsi:noNamespaceSchemaLocation='HTTP://…'>

<xsd:element name='Book'>

<xsd:complexType>

<xsd:sequence>

<xsd:element name='Front' minOccurs='1'

maxOccurs='1' type='frontType'/>…

63

Alternatives: Schematron &
RelaxNG

� Schematron based on XPath (XSLT)
� Doesn’t support datatyping as well
� Supports additional content models
� May become an ISO standard

� RelaxNG
� Returns some of the power of SGML DTDs
back to XML (mixed and unordered content)

� Uses datatyping from the XML Schema spec
� Does not support inheritance
� Developed by an OASIS Technical Committee
chaired by James Clark

22

64

Namespaces
� Qualify element and attribute names
� Allows modularization of schemas

� Mix and match elements from multiple
schemas
in document instances

� Import or include from one XML Schema into
another

<oai:metadata xmlns:oai='http:…' xmlns:oai_dc='…'
xmlns:dc='…'>

<oai_dc:dc>

<dc:title>…</dc:title>

<dc:creator>…</dc:creator>

65

XML & Cascading Style
Sheets
� Attach styling instructions directly to
XML files
� <?xml-stylesheet href=“http:…" type="text/css" ?>

� Supported by newest browsers: IE5+, Mozilla, Opera

� Can style but not rearrange elements
� Block or inline style

� Bold, italic, underline, font, color, etc.

� Margins, positioning

� Generated content (browser support not
good)

front author {color:red; font-weight:bold; font-
family:serif;}

66

XSLT — Transforming
Stylesheets
Language for transforming XML documents

� Into HTML, Text, or other XML documents

� Supported in new browsers (IE5+, Mozilla; not Opera)

� Usually applied on the server or in batch mode

� Valuable for interoperability or reusability

<xsl:template match='//author'>

<xsl:element name='dc:creator'>

<xsl:value-of select='lastname'/>

<xsl:text>, </xsl:text>

<xsl:value-of select='firstname'/>

</xsl:element >

</xsl:template>

23

67

XSL-FO (formatting objects)
� Another styling language
� Similar to CSS, but includes the power of XSLT
to rearrange the document

� Syntax is entirely XML
� Not currently supported in browsers (but there are
tools for use on the server or in batch mode)

<fo:block font-family="serif" font-weight="bold"
color="red">

Author: Cole, T

</fo:block>

68

XPath, XPointer, & XLink

� XPath
� Allows addressing of parts of an XML document
� Used in XSLT, XPointer, and XQuery

� /document/front/author/@number

� XPointer (working draft)
� Used as a fragment id in an XML URI reference

� http://.../some.xml#xpointer(/document/front/author)

� XLink
� Creates and describes extended or simple links between resources
� Used for HTML-style hrefs or imgs, tables of contents, etc.

<aulink xlnk:type="simple" xlnk:href="…"
xlnk:actuate="onRequest">

Cole, T

</aulink>

69

XQuery (XML query
language)

� Treat an XML document or collection
of documents as a database

� Equivalent to SQL SELECT
statements,
only for XML

� Some support in XML databases
(but working draft only)

24

70

Programming standards

� “Platform- and language-neutral interfaces that allow
programs and scripts to dynamically access and update
the content, structure, and style of XML documents.”

� Document Object Model (DOM)

� Object-based

� Better for complex documents

� High memory usage, slower

� Documents can be updated

� Simple API for XML (SAX)

� Event-based

� Better for simple documents

� Low memory usage, faster

� Documents cannot be updated

71

Other XML-related
standards

� XBase

� XForms

� XML Encryption

� XML Signature

� Many more …

72

6. Implementation issues &
costs

Discussion Points:

� Tools
� Range of options

� Specialized tools expensive

� Good technical resources on the Web

� Significant upfront investment
� Initial training is greatest expense

� Ongoing costs moderate

� Need to be clear about objectives

� Similar to what you went through to get on
Web

25

73

XML authoring tools

� XML editors

� XMetaL (Corel/SoftQuad)

� Epic Editor (Arbortext)

� TurboXML (Tibco Extensibility)

� Standard Office Tools

� WordPerfect 2002 (Corel)

� Microsoft Office XP

� OpenOffice

� Plain Text Editors

74

Other XML tools

� Validating parsers & transformation tools

� MSXML (Microsoft)

� Xerces, Xalan (Apache Software Foundation)

� XSV (U. of Edinburgh)

� Document management & database tools

� Tamino (Software AG)

� XMLCanon/Developer (Tibco/Extensibility)

� DLXS/XPAT (U. of Michigan/OpenText)

� XML-aware browsers

75

XML resources on the Web

� World Wide Web Consortium
� OASIS
� Microsoft Developer Network
� Sun Microsystems
� Apache XML Project
� XML.COM (O’Reilly)
� XML.ORG (OASIS)
� ZVON.ORG

26

76

Need to acquire expertise

� Turnkey XML solutions of limited utility

� Can start with well-formed XML
� For real utility, need to understand
schemas

� Stylesheet expertise required to
customize UI
� CSS if users limited to XML-aware browsers

� XSLT + CSS for browser neutrality

� XSLT also required for crosswalk, refresh

� Outsourcing an option for certain applications

� Analogous to WWW & HTML four years ago

77

Ongoing costs

� Underlying technology now reasonably
stable
� Non-proprietary standards, now 4 years old

� Parsers, validators, & transformation tools stable

� If initial design meets long-term needs, ongoing
maintenance costs will be minimal

� Changes to schemas, presentation layer,
workflow can be costly
� Small schema change can require major
retrospective changes in documents & stylesheets

� Work hard to identify necessary schema changes
as quickly as possible

78

Final thoughts

� Core XML technologies stable & mature
� Ancillary standards are still evolving

� Best way to learn is by doing
� Start with a small project

� Long-term benefit potential is great
� Archival refreshes generally easier, less
frequent

� Extensible & powerful

� Facilitates interoperability now & in the
future

� Requires initial investment of time and
resources

