Agenda - Introduction to
XML

What is it?

What's it good for?

How does it work?

The infrastructure of XML
Using XML on the Web
Implementation issues & costs

o v s wNR

1. What is it?

Discussion points: "
m First principles: OHCO
m Example: A simple XML fragment

m Compare/contrast: SGML, HTML,
XHTML
n A different XML for every community

= Terminology

Ordered hierarchies of
content objects

m Premise: A text is the sum of its component
parts
= A <Book> could be defined as containing:
<FrontMatter>, <Chapter>s, <BackMatter>

= <FrontMatter> could contain:
<BookTitle> <Author>s <PubInfo>

= A <Chapter> could contain:
<ChapterTitle> <Paragraph>s
= A <Paragraph> could contain:
<Sentence>s or <Table>s or <Figure>s ...
m Components chosen should reflect
anticipated use

Ordered hierarchies of
content objects

m OHCO is a useful, albeit imperfect, model
= Exposes an object’s intellectual structure
m Supports reuse & abstraction of components
m Better than a bit-mapped page image

= Better than a model of text as a stream of
characters plus formatting instructions

= Data management system for document-like
objects

= Does not allow overlapping content objects
= Incomplete; requires infrastructure

Content objects in a book

Book

FrontMatter
BookTitle
Author(s)
PubInfo

Chapter(s)
ChapterTitle
Paragraph(s)

BackMatter
References
Index

Content objects in a catalog
card

Card
—CallNumber
—MainEntry
—TitleStatement

t TitleProper
StatementOfResponsibility

—Imprint

—SummaryNote
+—AddedEntrySubject(s)
—Added EntryPersonalName(s)

Semistructured Data

m Another data model, based on
trees.

m Motivation: flexible representation
of data.

m Often, data comes from multiple
sources with differences in notation,
meaning, etc.

m Motivation: sharing of documents
among systems and databases.

Graphs of Semistructured Data

m Nodes = objects.
m Labels on arcs (attributes, relationships).
m Atomic values at leaf nodes (nhodes with
no arcs out).
m Flexibility: no restriction on:
= Labels out of a node.
= Number of successors with a given label.

Example: Data Graph

root Notice a
é new kind

of data.

name = —
S N
(@ NS The beer object
AN for Bud
The bar object

for Joe's Bar

10

XML

m XML = Extensible Markup Language.

m» While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).

m Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

11

A simple XML fragment

<Book>
<FrontMatter>
<BookTitle>XML Is Easy</BookTitle>
<Author>Tim Cole</Author>
<Author>Tom Habing</Author>
<PubInfo>CDP Press, 2002</PubInfo>
</FrontMatter>
<Chapter>
<ChapterTitle>First Was SGML</ChapterTitle>

<Paragraph>Once upon a time ..</Paragraph>
</Chapter>

</Book>

12

This is NOT XML

<PoemFragment>
<Stanza>

<Line><Sentence>It was six men of
Indostan</Line>

<Line>To learning much inclined, </Line>
<Line>Who went to see the Elephant</Line>
<Line>(Though all of them were blind), </Line>
<Line>That each by observation</Line>

<Line>Might satisfy his
mind.</Sentence></Line>

</Stanza>

</PoemFragment>
13

XML comes from SGML

m Standard Generalized Markup Language
= Based on IBM’s GML (Goldfarb, et al.)
m ISO standard since 1989

= Used for large-scale document management
(Boeing 747 user’s manual)

= Expensive, complex to implement
= Not Web-friendly (no “well-formed” SGML)

= Too many options (e.g., tag minimization)

14

XML, HTML, & XHTML

m HTML—display-oriented, SGML-based
scheme for making Web pages
= Syntax & allowed elements (semantics) are

fixed

m XML—set of rules for defining markup
schemes
= Element set is fully extensible
= Syntax is fixed

s XHTML—HTML modified to be XML-
compliant (not just SGML-compliant)

15

Markup languages
compared

m XML syntax is stricter than HTML or SGML
= Must explicitly close all elements
m Attributes must be enclosed in quotes
= All markup is case-sensitive

m XML & SGML: no fixed tags, no
predefined style

m XML & SGML are extensible
» Fixed elements (HTML) vs. rules (XML, SGML)

= HTML elements describe how to present
content

= XML elements can describe the content itself
16

A different XML for every
community

m XML is a set of rules used for defining &
encoding intellectual structures

m XML is extensible & customizable
= [ts greatest strength
= [ts greatest weakness

» HTML was invented by physicists

= What if it had been lawyers, or teachers, or
bureaucrats, or librarians, or ...?

17

Terminology

m Document instance
m Document class

m Document Type Definition (DTD), or
schema

n Well-formed XML

= Valid XML

m Stylesheets

m XML Transformations

m Document Object Model (DOM)

18

2. What's it good for?

m Smarter documents
m Full text

m Metadata

m Machine-to-machine interactions

19

Smarter documents

m Standards-based
m Facilitates...
m Search & discovery
* Precise, field-specific searching
= Interoperability & normalization
= Complex transformations
= Linking between and within texts
= Reuse of documents and fragments

20

Smarter documents

#m Document t Typs
Evolution of
Full-

[Sineer

Collaborative Links
Proprietary o
Publication Link
Formats and|
d

P4

. l i =

Bitmapped
Print on IE::‘taMapp(:d Image with g[é; 0‘; ;rTTLh'II re(;gljsa‘;éLT
Paper 995 o1 ascil ° 5P FO ’
Text Image ASP.JSP. FO

Index
Inflexible Extensible

21

Full text

m Electronic Text Center (U of VA Library)
= Originally SGML, now also XML, eBooks
= 70,000 texts; 350,000 related images
= 37,000 visits to collection per day
» http://etext.lib.virginia.edu/

= Open eBook Forum
m International trade & standards organization
m Goal: establish specs & stds for epublishing
= http://www.openebook.org/

22

Using XML for full text

= No inherent presentation information
= Requires...
e CSS in XML-aware browsers, or
e XSLT to transform to XHTML, or
e XSL-FO to reformat for presentation
m Techniques for including non-text content
vary by application

m XML can be verbose

m Most standard full-text schemas are
complex 23

Metadata

m XML schemas exist for a range of
metadata standards
m Encoded Archival Description (EAD)
= MARC 21 XML (also MODS)
m Metadata Encoding & Transmission Standard
(METS)
» Dublin Core Variants
* Open Archives Initiative (OAI)
* National Science Digital Library (NSDL)
= Resource Description Framework (RDF)

24

Using XML for metadata

m Consistency in applying schema
= Optional versus required elements
» Consistent use of elements
= Granularity & depth of information

m XML schemas still evolving
= Attributes versus elements
= Mixing namespaces
= Schema languages
» Philosophical issues

25

Machine-to-machine
interactions

m Web services

» Facilitating machine-to-machine
communications
via XML

= Simple Object Access Protocol (SOAP)
= XML Protocol Working Group

m Semantic Web
= Abstract representation of data on the Web

» XML and Databases

3. How does it work?

In XML, there’s content and there’s
markup.

a 2
= Markup ¥
= Elements
m Attributes
= Comments

= Processing instructions
m Content ?

= Entities Q

= Encoded (Unicode) characters

Well-Formed and Valid XML

m Well-Formed XML allows you to
invent your own tags.

= Similar to labels in semistructured data.

m Valid XML involves a DTD
(Document Type Definition), a
grammar for tags.

28

Well-Formed XML

m Start the document with a declaration,
surrounded by <?xml ... ?> .

m Normal declaration is:

<?xml version = “1.0” standalone =
Ilyesll ?>
= “Standalone” = “no DTD provided.”

m Balance of document is a root tag
surrounding nested tags.

29

Tags

m Tags, as in HTML, are normally
matched pairs, as <FOO> ...
</FOO> .

m Tags may be nested arbitrarily.
m XML tags are case sensitive.

30

10

Example: Well-Formed XML

<?xml version = “1.0” standalone = “yes’ANAME
[<BARS> subobject
< >< >Joe’s Bar< ME>
<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></EEI‘R\>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE> </BEFRBEER
> subobject
<BAR> ...

(7>

31

XML and Semistructured
Data

m Well-Formed XML with nested tags is
exactly the same idea as trees of
semistructured data.

m We shall see that XML also enables
nontree structures, as does the
semistructured data model.

32

Example

m The <BARS> XML document is:

BARS
‘W BAR
BAR

33

11

DTD Structure

<!DOCTYPE <root tag> [
<!ELEMENT <nhame> (<components>) >
. . more elements . . .
1>

34

DTD Elements

m The description of an element
consists of its name (tag), and a
parenthesized description of any
nested tags.

m Includes order of subtags and their
multiplicity.

m Leaves (text elements) have
#PCDATA (Parsed Character DATA)
in place of nested tags.

35

Example: DTD
A BARS object has

<!DOCTYPE BARS [zero or more BAR’s
<IELEMENT BARS (BAR?*)>nested within.
<IELEMENT BAR (NAME, BEER+)> .

<!ELEMENT NAME (#PCDATA)>NAME and one

<IELEMENT BEER (NAME, PRICE}Soece.

<IELEMENT PRICE (#PCDATA)>

1> f A BEER has a
NAME and PRICE NAME and a
are text. PRICE.

36

12

Element Descriptions

m Subtags must appear in order
shown.

m A tag may be followed by a symbol
to indicate its multiplicity.
m ¥ = zero or more.
= + = Oone or more.
m ? = zero or one.

m Symbol | can connect alternative
sequences of tags.

37

Example: Element
Description

m A name is an optional title (e.g.,
“Prof.”), a first name, and a last
name, in that order, or it is an IP
address:

<!ELEMENT NAME (

(TITLE?, FIRST, LAST) | IPADDR
) >

38

Use of DTD's

1. Set standalone = “no”.
2. Either:

a) Include the DTD as a preamble of the
XML document, or

b) Follow DOCTYPE and the <root tag>
by SYSTEM and a path to the file
where the DTD can be found.

39

13

Example (a)

<?xml version ="1.0" standalone = “no” ?>
<IDOCTYPE BARS [

<IELEMENT BARS (BAR¥)>
<IELEMENT BAR (NAME, BEER+;)>/ The DTD
<IELEMENT NAME (#PCDATA)

<IELEMENT BEER (NAME, PRICE)>

<IELEMENT PRICE (#PCDATA) / The document

1>
<BARS>
<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>

<BEER><NAME> Miller</NAME>
<PRICE>3.00</PRICE></BEER>

</BAR>
BDAK
</BARS>

40

Example (b)

m Assume the BARS DTD is in file bar.dtd.

<?xml version = “1.0” standalone = “no” ?>

t .dtd”>
<BARS> \ Get the DTD
<BAR><NAME>Joe's Bar</NAME> from the file
<BEER><NAME>Bud</NAME> bar.dtd

<PRICE>2.50</PRICE></BEER>
<BEER><NAME> Miller</NAME >
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

41

Attributes

m Opening tags in XML can have
attributes.

mIn a DTD,
<!ATTLISTE...>

declares an attribute for element E,
along with its datatype.

42

14

Example: Attributes

m Bars can have an attribute kind, a
character string describing the bar.
<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR kind|CDATA

#IMPLIEDp
Character string

; t
Attribute is optional type; no tags

opposite: #REQUIRED

43

Example: Attribute Use

m In a document that allows BAR tags, we
might see:
<BaR ind - [Tonanie— RIS
<NAME>Akasaka</NAME>
<BEER><NAME>Sapporo</NAME>
<PRICE>5.00</PRICE></BEER>

</BAR>

44

ID’s and IDREF’s

m Attributes can be pointers from one
object to another.
m Compare to HTML’s NAME = “foo” and
HREF = “#foo".
m Allows the structure of an XML
document to be a general graph,
rather than just a tree.

45

15

Creating ID’s

m Give an element E an attribute A of
type ID.

m When using tag <E > in an XML
document, give its attribute A a
unique value.

m Example:
<E A = ‘“xyz">

46

Creating IDREF’s

m To allow objects of type F to refer
to another object with an ID
attribute, give F an attribute of type
IDREF.

m Or, let the attribute have type
IDREFS, so the F -object can refer
to any number of other objects.

47

Example: ID’s and IDREF’s

m Let’s redesign our BARS DTD to include
both BAR and BEER subelements.

m Both bars and beers will have ID
attributes called name.

m Bars have SELLS subobjects, consisting of
a number (the price of one beer) and an
IDREF theBeer leading to that beer.

m Beers have attribute soldBy, which is an
IDREFS leading to all the bars that sell it.

48

16

Bar elements have name

as an ID attribute and
Th e DTD have one or more
<IDOCTYPE BARS [SELLS subelements.

<!ELEMENT BARS (BAR*, BEER*)>
<!ELEMENTBAR (SELLS+)>

SELLS elements
have a number
<IATTLIST BAR name ID #REQUIRED > (the price) and

<IELEMENT SELLS (#PCDATA)> one fbeference
<IATTLIST SELLS theBeer IDREF 0 8 beer:

#REQUIRED> ‘ |

<!ELEMENT BEER EMPTY>
<IATTLIST BEER name ID #REQUIRED>|

<!ATTLAST BEER soldBy IDREFS
#IMPiDiETSS Beer elements have an ID attribute called name,
next and a soldBy attribute that is a set of Bar names.

1>

49

Example Document

<BARS>
<BAR name = “JoesBar”>

<SELLS theBeer =
“Bud”>2.50</SELLS>

<SELLS theBeer =
“Miller”>3.00</SELLS>

</BAR> ...

<BEER name = “Bud” soldBy = “JoesBar
SuesBar ..."/> ..

</BARS>

50

Empty Elements

m We can do all the work of an
element in its attributes.
m Like BEER in previous example.

m Another example: SELLS elements
could have attribute price rather

than a value that is a price.

51

17

Example: Empty Element

m In the DTD, declare:
<!ELEMENT SELLS EMPTY>

<IATTLIST SELLS theBeer IDREF
#REQUIRED>

<IATTLIST SELLS price CDATA
#REQUIRED>

m Example use:
<SELL§OEEI'\&CBe§t%;t§ “Bud” price = “2.50"/>

“matching tags” rule o

Elements

Elements are markup that enclose content

m <element_name>...</element_name>
or <element_name />
m Content models
= Parsed Character Data Only
= Child Elements Only
= Mixed

<author>Narayan, RK</author>

53

Attributes

Associate a name-value pair with an
element

m <tag namel="valuel"
name2='value2'>...</tag>
= Can be used to embellish content...
m or to associate added content to an element

<author order='1l'>Narayan,
RK</author>

<author name= ‘Desai, Kiran' />

54

18

Comments

Human-readable annotations

m Can be inserted anywhere after headers
= Not part of the document structure

m Usually ignored by XML parsers

= Do not have to be passed to application

<!—— This is a comment -->

55

Processing instructions

Machine-readable & application-specific

m Must be passed through by XML Parsers
m XML Declaration is a special PI

m XML Declaration is always first line in file

<?xml version='1.0' encoding='UTF-8' ?>

<?MyApp indent='on' linefeeds='off' ?>

56

Entities

m Placeholders for internal or external
content
m Placeholder for a single character...
m or string of text...
m or external content (images, audio, etc.)
m Implementation specifics may vary

<!ENTITY copyright "©" >

©right; is replaced by ©

<!ENTITY pic SYSTEM "mugshot.gif" NDATA gif >
&pic; is replaced by graphic image

57

19

Character Encoding Issues

m XML Parsers must accept UTF-8 & UTF-16
m Also must accept &#nnnn; or &#xhhhh;

m MARC-8 encodings must be converted to
Unicode for use in XML

http://lcweb.loc.gov/marc/specifications/specchartab
les.html

58

4. The infrastructure of
XML

m Required to make it work...

m DTDs & schemas: defining
document classes

= Reusing & integrating schemas
(using namespaces)

= Stylesheets for presentation
& transformation

= Standards for linking, querying,
& pointing

= Programming standards

59

Defining Document Classes

m Formal descriptions of document structure
= Set expectations
= Maximize reusability
= Enforce business rules

m DTDs

m XML Schema
m Schematron
m Relax NG

60

20

Document Type Definitions
(DTD)

m Legacy from SGML; part of XML standard
<!DOCTYPE Book SYSTEM 'http://..'>
<!ELEMENT Book (Front, Chapter+, Back?)>

<!ATTLIST Book
type (series|monograph) #REQUIRED>

61

XML schema language

= New in XML
= Uses XML syntax
= Supports datatyping
m Richer and more complex
<book xsi:noNamespaceSchemaLocation='HTTP://..'>

<xsd:element name='Book'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name='Front' minOccurs='1l"
maxOccurs='1l' type='frontType'/>..

62

Alternatives: Schematron &
RelaxNG

m Schematron based on XPath (XSLT)
= Doesn’t support datatyping as well
= Supports additional content models
= May become an ISO standard

m RelaxNG
= Returns some of the power of SGML DTDs

back to XML (mixed and unordered content)

m Uses datatyping from the XML Schema spec
= Does not support inheritance

n Develcg)ed by an OASIS Technical Committee
chaired by James Clark

63

21

Namespaces

= Qualify element and attribute names
m Allows modularization of schemas
= Mix and match elements from multiple
schemas
in document instances

= Import or include from one XML Schema into
another

<oai:metadata xmlns:ocai='http:..' xmlns:oai_dc="'.."
xmlns:de="'..">

<oai_dc:dc>
<dc:title>..</dc:title>
<dc:creator>..</dc:creator>

64

XML & Cascading Style
Sheets

m Attach styling instructions directly to
XML files

m <?xml-stylesheet href=“http:.." type="text/css" ?>

= Supported by newest browsers: IE5+, Mozilla, Opera
m Can style but not rearrange elements

= Block or inline style

= Bold, italic, underline, font, color, etc.

= Margins, positioning

= Generated content (browser support not

good)

front author {color:red; font-weight:bold; font-
family:serif;}

65

XSLT — Transforming
Stylesheets

Language for transforming XML documents
= Into HTML, Text, or other XML documents
= Supported in new browsers (IE5+, Mozilla; not Opera)
= Usually applied on the server or in batch mode

= Valuable for interoperability or reusability

<xsl:template match='//author'>
<xsl:element name='dc:creator'>
<xsl:value-of select='lastname'/>
<xsl:text>, </xsl:text>
<xsl:value-of select='firstname'/>
</xsl:element >
</xsl:template>

66

22

XSL-FO (formatting objects)

Another styling language

= Similar to CSS, but includes the power of XSLT
to rearrange the document

m Syntax is entirely XML

= Not currently supported in browsers (but there are
tools for use on the server or in batch mode)

<fo:block font-family="serif" font-weight="bold"
color="red">

Author: Cole, T
</fo:block>

67

XPath, XPointer, & XLink

n XPath
= Allows addressing of parts of an XML document
= Used in XSLT, XPointer, and XQuery
= /document/front/author/@number

mn XPointer (working draft)
= Used as a fragment id in an XML URI reference
= http://.../some.xml#xpointer(/document/front/author)

= XLink

= Creates and describes extended or simple links between resources
= Used for HTML-style hrefs or imgs, tables of contents, etc.

<aulink xlnk:type="simple" xlnk:href=".."
x1lnk:actuate="onRequest">
Cole, T

</aulink>

68

XQuery (XML query
language)

m Treat an XML document or collection
of documents as a database

m Equivalent to SQL SELECT
statements,
only for XML

m Some support in XML databases
(but working draft only)

69

Programming standards

= "Platform- and language-neutral interfaces that allow
programs and scripts to dynamically access and update
the content, structure, and style of XML documents.”

» Document Object Model (DOM)
= Object-based
= Better for complex documents
= High memory usage, slower
= Documents can be updated
= Simple API for XML (SAX)
= Event-based
» Better for simple documents
= Low memory usage, faster
= Documents cannot be updated

70

Other XML-related
standards

m XBase

m XForms

m XML Encryption
m XML Signature
= Many more ...

71

6. Implementation issues &

costs

Discussion Points:
= Tools
= Range of options
m Specialized tools expensive
= Good technical resources on the Web
m Significant upfront investment
m Initial training is greatest expense
= Ongoing costs moderate
= Need to be clear about objectives

= Similar to what you went through to get on
Web

72

24

XML authoring tools

m XML editors

m XMetal (Corel/SoftQuad)

= Epic Editor (Arbortext)

m TurboXML (Tibco Extensibility)
m Standard Office Tools

» WordPerfect 2002 (Corel)

m Microsoft Office XP

= OpenOffice
m Plain Text Editors

73

Other XML tools

m Validating parsers & transformation tools
= MSXML (Microsoft)
m Xerces, Xalan (Apache Software Foundation)
= XSV (U. of Edinburgh)

m Document management & database tools
= Tamino (Software AG)
= XMLCanon/Developer (Tibco/Extensibility)
n DLXS/XPAT (U. of Michigan/OpenText)

m XML-aware browsers

74

XML resources on the Web

m World Wide Web Consortium
m OASIS

m Microsoft Developer Network
m Sun Microsystems

m Apache XML Project

m XML.COM (O'Reilly)

m XML.ORG (OASIS)

m ZVON.ORG

75

25

Need to acquire expertise

m Turnkey XML solutions of limited utility
m Can start with well-formed XML
= For real utility, need to understand
schemas
m Stylesheet expertise required to
customize UI

m CSS if users limited to XML-aware browsers

= XSLT + CSS for browser neutrality

= XSLT also required for crosswalk, refresh
m Outsourcing an option for certain applications
= Analogous to WWW & HTML four years ago

76

Ongoing costs

m Underlying technology now reasonably
stable
= Non-proprietary standards, now 4 years old
» Parsers, validators, & transformation tools stable
» If initial design meets long-term needs, ongoing
maintenance costs will be minimal
m Changes to schemas, presentation layer,
workflow can be costly
= Small schema change can require major
retrospective changes in documents & stylesheets
= Work hard to identify necessary schema changes
as quickly as possible

77

Final thoughts

m Core XML technologies stable & mature
= Ancillary standards are still evolving

m Best way to learn is by doing
= Start with a small project

m Long-term benefit potential is great

= Archival refreshes generally easier, less
frequent

= Extensible & powerful
» Facilitates interoperability now & in the
future
m Requires initial investment of time and
resources

78

26

