
1

1

XPath

Path Expressions

Conditions

2

Paths in XML Documents

� XPath is a language for describing
paths in XML documents.

� Really think of the semi-structured
data graph and its paths.

3

Example DTD

<!DOCTYPE BARS [

<!ELEMENT BARS (BAR*, BEER*)>

<!ELEMENT BAR (PRICE+)>

<!ATTLIST BAR name ID #REQUIRED>

<!ELEMENT PRICE (#PCDATA)>

<!ATTLIST PRICE theBeer IDREF #REQUIRED>

<!ELEMENT BEER EMPTY>

<!ATTLIST BEER name ID #REQUIRED>

<!ATTLIST BEER soldBy IDREFS #IMPLIED>

]>

2

4

Example Document

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = Miller”>3.00</PRICE>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar

SuesBar … ”/> …

</BARS>

5

Path Descriptors

� Simple path descriptors are
sequences of tags separated by
slashes (/).

� If the descriptor begins with /, then
the path starts at the root and has
those tags, in order.

� If the descriptor begins with //, then
the path can start anywhere.

6

Value of a Path Descriptor

� Each path descriptor, applied to a
document, has a value that is a
sequence of elements.

� An element is an atomic value or a
node.

� A node is matching tags and
everything in between.
� I.e., a node of the semistructured
graph.

3

7

Example:
/BARS/BAR/PRICE

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar

SuesBar …”/> …

</BARS> /BARS/BAR/PRICE describes the
set with these two PRICE elements
as well as the PRICE elements for
any other bars.

8

Example: //PRICE

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar

SuesBar …”/>…

</BARS>

//PRICE describes the same PRICE
elements, but only because the DTD
forces every PRICE to appear within
a BARS and a BAR.

9

Wild-Card *

� A star (*) in place of a tag
represents any one tag.

� Example: /*/*/PRICE represents all
price objects at the third level of
nesting.

4

10

Example: /BARS/*

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar

SuesBar …”/> …

</BARS>
/BARS/* captures all BAR
and BEER elements, such
as these.

11

Attributes:
/BARS/*/@name

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar

SuesBar …”/> …

</BARS>

/BARS/*/@name selects all
name attributes of immediate
subelements of the BARS element.

Attributes of a tag may
appear in paths as if they
were nested within that tag.

12

Selection Conditions

� A condition inside […] may follow a
tag.

� If so, then only paths that have that
tag and also satisfy the condition are
included in the result of a path
expression.

5

13

Example: Selection
Condition

� /BARS/BAR[PRICE < 2.75]/PRICE
<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
The condition that the PRICE be
< $2.75 makes this price but not
the Miller price satisfy the path
descriptor.

14

Example: Attribute in Selection

� /BARS/BAR/PRICE[@theBeer = “Miller”]

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …

Now, this PRICE element
is selected, along with
any other prices for Miller.

15

Axes

� In general, path expressions allow us to
start at the root and execute steps to
find a sequence of nodes at each step.

� At each step, we may follow any one of
several axes.

� The default axis is child:: --- go to all the
children of the current set of nodes.

6

16

Example: Axes

� /BARS/BEER is really shorthand for
/BARS/child::BEER

� @ is really shorthand for the
attribute:: axis.

� Thus, /BARS/BEER[@name = “Bud”] is
shorthand for

/BARS/BEER[attribute::name = “Bud”]

17

More Axes

� Some other useful axes are:

1. parent:: = parent(s) of the current
node(s).

2. descendant-or-self:: = the current
node(s) and all descendants.

� Note: // is really shorthand for this axis.

3. ancestor::, ancestor-or-self, etc.

18

XQuery

CS317/387

7

19

XQuery

� XQuery extends XPath to a query
language that has power similar to SQL.

� XQuery is an expression language.
� Like relational algebra --- any XQuery
expression can be an argument of any other
XQuery expression.

� Unlike RA, with the relation as the sole
datatype, XQuery has a subtle type
system.

20

The XQuery Type System

1. Atomic values : strings, integers,
etc.

� Also, certain constructed values like
true(), date(“2004-09-30”).

2. Nodes.

� Seven kinds.

� We’ll only worry about four, on next
slide.

21

Some Node Types

1. Element Nodes are like nodes of
semistructured data.

� Described by !ELEMENT declarations in
DTD’s.

2. Attribute Nodes are attributes,
described by !ATTLIST declarations
in DTD’s.

3. Text Nodes = #PCDATA.

4. Document Nodes represent files.

8

22

Example Document

<BARS>

<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …

<BEER name = “Bud” soldBy = “JoesBar SuesBar … ”/> …

</BARS>

23

Example Nodes

BARS

PRICEPRICE

BEERBAR
name =
“JoesBar”

theBeer =
“Miller”

theBeer
= “Bud”

SoldBy
= “…”

name =
“Bud”

3.002.50 Green = element
Orange = attribute
Purple = text

24

Document Nodes

� Form: document(“<file name>”).

� Establishes a document to which a
query applies.

� Example:
document(“/users/umesh/bars.xml”)

9

25

XQuery Values

� Item = node or atomic value.

� Value = ordered sequence of zero
or more items.

� Examples:

1. () = empty sequence.

2. (“Hello”, “World”)

3. (“Hello”, <PRICE>2.50</PRICE>, 10)

26

FLWR Expressions

1. One or more for and/or let clauses.

2. Then an optional where clause.

3. A return clause.

27

Semantics of FLWR Expressions

� Each for creates a loop.
� let produces only a local definition.

� At each iteration of the nested
loops, if any, evaluate the where
clause.

� If the where clause returns TRUE,
invoke the return clause, and
append its value to the output.

10

28

FOR Clauses

for <variable> in <expression>, . . .

� Variables begin with $.

� A for-variable takes on each item in
the sequence denoted by the
expression, in turn.

� Whatever follows this for is executed
once for each value of the variable.

29

Example: FOR

� $beer ranges over the name attributes
of all beers in our example document.

� Result is a list of tagged names, like
<BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME> . . .

“Expand the en-
closed string by
replacing variables
and path exps. by
their values.”for $beer in

document(“bars.xml”)/BARS/BEER/@name

Return

<BEERNAME> {$beer} </BEERNAME>

30

LET Clauses

let <variable> := <expression>, . . .

� Value of the variable becomes the
sequence of items defined by the
expression.

� Note let does not cause iteration; for
does.

11

31

Example: LET

let $d := document(“bars.xml”)

let $beers := $d/BARS/BEER/@name

return

<BEERNAMES> {$beers} </BEERNAMES>

� Returns one element with all the names of
the beers, like:

<BEERNAMES>Bud Miller …</BEERNAMES>

32

Following IDREF’s

� XQuery (but not XPath) allows us to
use paths that follow attributes that
are IDREF’s.

� If x denotes a sequence of one or
more IDREF’s, then x =>y denotes

all the elements with tag y whose
ID’s are one of these IDREF’s.

33

Example

� Find all the beer elements where the beer
is sold by Joe’s Bar for less than 3.00.

� Strategy:

1. $beer will for-loop over all beer elements.

2. For each $beer, let $joe be either the Joe’s-Bar
element, if Joe sells the beer, or the empty
sequence if not.

3. Test whether $joe sells the beer for < 3.00.

12

34

Example: The Query

let $d := document(”bars.xml”)

for $beer in $d/BARS/BEER

let $joe := $beer/@soldBy=>BAR[@name=“JoesBar”]

let $joePrice := $joe/PRICE[@theBeer=$beer/@name]

where $joePrice < 3.00

return <CHEAPBEER> {$beer} </CHEAPBEER>

Attribute soldBy is of type
IDREFS. Follow each ref
to a BAR and check if its
name is Joe’s Bar.

Find that PRICE subelement
of the Joe’s Bar element that
represents whatever beer is
currently $beer.

Only pass the values of
$beer, $joe, $joePrice to
the RETURN clause if the
string inside the PRICE
element $joePrice is < 3.00

35

Order-By Clauses

� FLWR is really FLWOR: an order-by
clause can precede the return.

� Form: order by <expression>

� With optional ascending or descending.

� The expression is evaluated for each
output element.

� Determines placement in output
sequence.

36

Example: Order-By

� List all prices for Bud, lowest first.

let $d := document(“bars.xml”)

for $p in $d/BARS/BAR/PRICE[@theBeer=”Bud”]

order by $p

return { $p }

13

37

Predicates

� Normally, conditions imply existential
quantification.

� Example: /BARS/BAR[@name] means “all
the bars that have a name.”

� Example:
/BARS/BAR[@name=”JoesBar”]/PRICE =
/BARS/BAR[@name=”SuesBar”]/PRICE
means “Joe and Sue have at least one
price in common.”

38

Other Operators

� Use Fortran comparison operators to
compare atomic values only.

� eq, ne, gt, ge, lt, le.

� Arithmetic operators: +, - , *, div,
idiv, mod.

� Apply to any expressions that yield
arithmetic or date/time values.

39

Effective Boolean Values

� The effective boolean value (EBV)
of an expression is:

1. The actual value if the expression is of
type boolean.

2. FALSE if the expression evaluates to
0, “” [the empty string], or () [the
empty sequence].

3. TRUE otherwise.

14

40

EBV Examples

1. @name=”JoesBar” has EBV TRUE
or FALSE, depending on whether
the name attribute is ”JoesBar”.

2. /BARS/BAR[@name=”GoldenRail”]
has EBV TRUE if some bar is
named the Golden Rail, and FALSE
if there is no such bar.

41

Boolean Operators

� E1 and E2, E1 or E2, not(E), if
(E1) then E2 else E3 apply to any
expressions.

� Take EBV’s of the expressions first.

� Example: not(3 eq 5 or 0) has value
TRUE.

� Also: true() and false() are functions
that return values TRUE and FALSE.

42

Quantifier Expressions

some $x in E1 satisfies E2

1. Evaluate the sequence E1.

2. Let $x (any variable) be each item
in the sequence, and evaluate E2.

3. Return TRUE if E2 has EBV TRUE
for at least one $x.

� Analogously:

every $x in E1 satisfies E2

15

43

Document Order

� Comparison by document order: <<
and >>.

� Example:
$d/BARS/BEER[@name=”Bud”] <<
$d/BARS/BEER[@name=”Miller”] is
true iff the Bud element appears
before the Miller element in the
document $d.

44

Set Operators

� union, intersect, except operate on
sequences of nodes.

� Meanings analogous to SQL.

� Result eliminates duplicates.

� Result appears in document order.

