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Abstract

This B-Tech. Project is aimed at the Design and Implementation of an FPGA - based P.C.I. /
P.C.I. Express Bridge. In order to achieve this goal, we need to have the complete knowledge
of P.C.I. and P.C.I. Express Specifications. This First Stage Report is aimed to cover the
Fundamentals of the P.C.I. Express I/O Interconnect. The report presents an introduction to
the P.C.I. Express and its benefits. It presents a detailed overview of the P.C.I. Express Layered
Architecture and the Credits-based FLow Control Mechanism followed by P.C.I. Express. I have
also given the Proposed Design Outline for the Implementation of FPGA - based P.C.I. / P.C.I.
Express Bridge.
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Chapter 1

Introduction

There are certain times in the evolution of technology that serve as inflection points that forever
change the course of events. For the computing sector and communications, the adoption
of P.C.I. Express will serve as one of these inflection points. P.C.I. stands for Peripheral
Component Interconnect. P.C.I. Express is the high-performance interconnect that gives "more
for less”, meaning more bandwidth with fewer pins. P.C.I. Express is a high speed, low voltage,
differential serial pathway for two devices to communicate with each other. P.C.I. Express
uses a protocol that allows devices to communicate simultaneously by implementing dual uni-
directional paths between two devices. P.C.I. Express provides a speed of 2.5 Gigabits per
second per direction. The theoritical bandwidth of P.C.I. Express nearly doubles the theoritical
bandwidth of P.C.I. with approximately one tenth the number of pins [1].

Aside from connecting two devices, P.C.I. Express provides two methods to satisfy the
growing bandwidth or data-throughput capacity requirements between two devices. The P.C.I.
Express can be scaled in a linear manner by adding additional serial lanes that work together
to meet the bandwidth objectives of a device. A key advantage of P.C.I. Express scalability
is that it can be scaled on a device-to-device basis within a system of multiple P.C.I. Express
connections. For instance, if one device-to-device interconnect requires P.C.I. Express to be
scaled to meet its bandwidth objectives, the rest of the P.C.I. Express system device-to-device
interconnections are not affected.

1.1 Benefits of P.C.I. Express

P.C.1. Express provides benefits across five main vectors: layered architecture, high perfor-
mance, [/O simplification, next generation multimedia and ease of use.

1.1.1 Layered Architecture

The P.C.I. Express layered architecture improves serviceability and scalability. The Software
Layer maintains software compatiability with P.C.I. to ease migration. In brief, the three layers
which form the core of P.C.I. Express are Transaction Layer, Data Link Layer and Physical
Layer. The layered architecture is critical to enabling the scalability of P.C.I. Express. For the
next generation speed bump from 2.5 gigabits per second to probably more than 5.0 gigabits
per second, only the Physical Layer needs to evolve.

1.1.2 High Performance

The bus efficiency is determined by several factors such as protocol and design limitations and
is beyond the scope of this report. We are using Maximum theoritical bandwidth to compare
various applications. For example, P.C.I. is a 32-bit bus running at 33 MHz, so it can provide



the Maximum bandwidth of 132 Megabytes per second. P.C.1.-X is a 64-bit bus running at 66
MHz for a total of 533 Megabytes per second. But approximately, 85 percent of computing
industry continues to use the 33-MHz version. However, the P.C.I. bus cannot actually transfer
data at these rates due to overhead required for commands as well as inability to perform reads
and writes at the same time.

The initial implementations of P.C.I. Express utilize a 2.5 gigabits per second per direction
bandwidth but the capability of the bus has the potential for growth to 10 gigabits per second
per direction. P.C.I. Express provides the bandwidth scalability of 250 megabytes per second
per direction for initial single lane (Lane is defined in the next chapter) to 32000 megabytes
per second per direction for 10 gigabits per second per direction signaling across 32 lanes.

1.1.3 I/O Simplification

In today’s computing platforms, there is a lot of overabudance of I/O technologies. Platforms
have P.C.I.-X for servers, Cardbus on mobile PCs and P.C.I. for desktop PCs. P.C.I. Express
provides a unique interface technology serving multiple market segments. For example, a
PC chipset designer may implement a x16 P.C.I. Express configuration for graphics, a x1
configuration for general purpose I/O and a x4 configuration as a high speed chip-to-chip
interconnects. (Different P.C.I. Express Link configurations are defined in next chapter)

1.1.4 Next Generation Multimedia

P.C.I. Express provides new capabilities for multimedia not available in the platform today-
namely Isochronous support. Isochronous is a specific type of QoS (Quality of Service) guar-
antee that data is delivered using a deterministic and time-dependent method.

1.1.5 Ease of Use

P.C.I. Express natively supports hot swap and hot plug. Hot swap is the ability to swap I/O
cards wihtout software interaction where as hot plug may require operating system interaction.
P.C.1. Express as a hardware specification defines the capability to support both hot swap and
hot plug, but hot plug support depends on the operating system. In the future, systems will
not need to be powered down to replace faulty equipment or install upgrades [1].



Chapter 2

PCI Express Architecture Overview

2.1 Links and Lanes

The connection between two PCI Express devices is called Link. A link consists of a number of
Lanes. A lane is the term used for a single set of differential transmit (TX) and receive pairs
(RX). The PCI Express Base Specification defines the following configuration of serial
links: x1, x2, x4, 8, ©12, ©16 and x32 [1]. For example, a &1 configuration indicates
that the link between two PCI Express devices consists of a single lane. A x4 configuration
indicates that the link between two PCI Express devices consists of 4 lanes. Following figures
shows 1 and x4 links.

RX 'TX
[ —— |
Device A . Device B
] I i
TX ' RX
Lane

Figure 2.1: x1 Link

At the device, the collection of transmitter and receiver pairs that are assosiated with a
link is referred to as a Port. The transmitter of one device must be the receiver for the other
device. Like links, a device’s port can be made up of multiple lanes.

2.1.1 Multiple Lanes

Much like lanes can be added to a highway to increase the total traffic throughput, multiple lanes
can be used within a PCI Express link to increase the available bandwidth. As previously noted,
the maximum bandwidth of a 1 link is 250 megabytes per second per direction. Because PCI
Express is dual unidirectional, this offers a maximum theoritical bandwidth of 500 megabytes
per second between the two devices. For example, the x4 link has a maximum bandwidth of
1000 megabytes per second per direction and the £16 link has a maximum bandwidth of 4000
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Figure 2.2: x4 Link, Lanes and Ports

megabytes per second per direction. This means that PCI Express can be adjusted to meet a
variety of applications with a variety of bandwidth needs.

2.2 Device Types

The PCI Express Base Specification [1] identifies 4 types of PCI Express Devices. These
are :

e Root Complex
e PCI Express to PCI bridge
e Endpoint

e Switch

2.2.1 Root Complex

The Root complex is the head or root of the connection of the I/O system to the CPU and the
Memory. Each interface off of the root complex defines a separate hierarchy domain.

2.2.2 PCI Express to PCI bridge

A PCI Express to PCI bridge has one PCI Express port and one or multiple PCI/PCI-X
bus interfaces. This element allows PCI Express to co-exist on a platform with existing PCI
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Figure 2.3: PCI Express Devices

technologies. This device must fully support all PCI and/or PCI-X transactions on its PCI
interface(s). It must follow a variety of rules for properly transforming those PCI/PCI-X
transactions into PCI Express transactions.

2.2.3 Endpoint

An Endpoint is a device that can request/complete PCI Express transactions for itself (for ex.,
a graphics device) or on behalf of a non-PCI Express device. There are two types of endpoints:
legacy and PCI Express, and they are differentiated by the types of transactions they support.

2.2.4 Switch

A Switch is used to fan out a PCI Express hierarchy. It is responsible for properly forwarding
transactions to the appropriate link. Unlike a root complex, it must always manage peer-to-
peer transactions between downstream devices (downstream means the side further away from
the root complex).

2.3 PCI Express Transactions

Transactions form the basis for the transformation of information between PCI Express devices.
PCI Express uses a split-transaction protocol. This means that there are two portions to
the transaction, the request and the completion. The transaction initiator referred to as
the requester,sends out the request packet. It makes its way towards the intended target



of the request, referred to as the completer. For requests that require completions, the
completer later sends back a completion packet (or packets) to the requester. A completion is
not necessarily required for each request.

Even though PCI Express links are point-to-point, this does not always mean that one of the
devices on the link is the requester and the other the completer. For example, say that the root
complex in Figure 2.3 wants to communicate with a PCI Express endpoint that is downstream of
the switch. The root complex is the requester and the endpoint is the completer. Even though,
the switch receives the transaction from the root complex, it is not considered a completer
of that transaction. Even though, the endpoint receives the transaction from the switch, it
does not consider the switch to be requester of that transaction. The requester identifies itself
within the request packet it sends out, and this informs the completer where it should return
the completion packets (if needed).

2.3.1 Transaction Types

The PCI Express architecture defines four transaction types: memory, I/O, configuration and
message [1].

Memory Transactions

Transactions targeting the memory space transfer data to or from a memory-mapped location.
There are several types of memory transactions: Memory Read Request, Memory Read Com-
pletion and Memory Write Request. Memory transactions use either 32-bit addressing or 64-bit
addressing.

I/O Transactions

Transactions targeting the I/O space transfer data to or from an I/O mapped location. There
are several types of I/O transactions: 1/O Read Request, I/O Read Completion, I/O Write
Request and I/O Write Completion. I/O transactions use only 32-bit addressing.

Configuration Transactions

Transactions targeting the configuration space are used for device configuration and setup.
These transactions access the configuration registers of PCI Express devices. There are several
types of configuration transactions: Configuration Read Request, Configuration Read Comple-
tion, Configuration Write Request and Configuration Write Completion.

Message Transactions

PCI Express adds this new transaction type to communicate a variety of miscellaneous messages
between PCI Express devices. These transactions are used for functions like interrupt signaling,
error signaling or power management. This transaction type is necessary since these functions
are no longer available via sideband signals such as PME, SERR and so on.

2.4 Architectural Build Layers

The specification defines three abstract layers that build a PCI Express transaction [1]. These
are:



e Transaction Layer : The main responsibility of this layer is to begin the process of
turning requests or completion data from the device core into a PCI Express transaction.

e Data Link Layer : The main responsibility of this layer is to ensure that the transactions
going back and forth across the link are received properly.

e Physical Layer : This layer is responsible for the actual transmitting and receiving of
the transaction across the PCI express link.

Since each PCI Express link is dual uni-directional, each of these architectural layers has
transmit as well as receive functions assosiated with it. Outgoing PCI Express transactions
may proceed from the transmit side of the Transaction Layer to the transmit side of the Data
Link Layer to the transmit side of the Physical Layer. Incoming transactions may proceed from
the receive side of the Physical Layer to the receive side of the Data Link Layer and then to
the transmit side of the Transaction Layer.

Device Core

[
! 3
TX RX - Transaction Layer
J |
TX RX - Data Link Layer
A .
' .
TX RX - Physical Layer
* * :
PCI Express
Link

Figure 2.4: The Three Architectural Build Layers

2.5 Packet Formation

As a transaction flows through the transmitting PCI Express device, each architectural layer
adds on its specific information [1]. The Transaction Layer generates a header and adds the
data payload (if required) and an optional ECRC (end-to-end CRC). The Data Link Layer
adds the sequence number and LCRC (link CRC). The Physical Layer frames it for proper
transmission to the other device.



When it gets to the receiver side of the link mate, the complete reversal of this build occurs.
The Physical Layer decodes the framing characters and passes along the rest of the information
(sequence number, header, data, ECRC and LCRC) to its Data Link Layer. The Data Link
Layer checks out the sequence number and LCRC, and then passes the header, data and ECRC
on to the Transaction Layer. The Transaction Layer decodes the ECRC (if applicable) and
header, and then passes the appropriate information on to its device core. Figure 2.5 shows the
buildup of a Transaction Layer Packet through Architectural Layers of a PCI Express Device.
And figure 2.6 shows the Flow of Transaction Layer Packet between two PCI Express devices

[3].

Optional—
I ! I

Header Data ECRC

At Transaction Layer

Sequence Header Data ECRC || LCRC
Number
At Data Link Layer
Sequence
Frame || Number || Tc2der Data ECRC || LCRC || Frame
At Physical Layer

Figure 2.5: Transaction Buildup for a TLP through Architectural Layers
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Chapter 3

Transaction Layer Architecture

Transaction Layer’s primary responsibility is to create PCI Express request and completion
transactions. It has both transmit functions for outgoing transactions and receive functions for
incoming transactions. On the transmit side, the Transaction Layer receives request data or
completion data from the Device core and then turns that information into an outgoing PCI
Express transaction. On the receive side, the Transaction Layer accepts incoming PCI Express
transactions from its Data Link Layer. This layer assumes all incoming information is correct
because it relies on its Data Link Layer to ensure that incoming information is error-free and
received in the proper sequence.

The Transaction Layer uses TLPs ( Transaction Layer Packets ) to communicate request
and completion data with other PCI Express devices. TLPs may address several address space
and have a variety of purposes; for example, read versus write, request versus completion and
memory versus configuration. Each Transaction Layer Packet has a header assosiated with it
to identify the type of transaction. The Transaction Layer of the originating device generates
the TLP and the Transaction Layer of the destination device consumes the TLP.

3.1 Transaction Layer Packets

The Transaction Layer Packet (TLP) is the means through which request and completion infor-
mation is communicated between PCI Express devices. A TLP consists of a header, an optional
data payload and an optional TLP digest. The Transaction Layer generates outgoing TLPs
based on the information it receives from its device core. The Transaction Layer then passes
the TLP on to its Data Link Layer for futher processing. The Transaction Layer also accepts
incoming TLPs from its Data Link Layer. The Transaction Layer checks the ECRC (optional)
and decodes the header information, and then passes along the appropriate information and
data payload to its device core [1].

The TLP always begins with a header. The header is DWord aligned (a multiple of 4
bytes) but varies in length based on the type of transaction. Depending on the type of packet,
Transaction Layer Packets may contain a data payload. If present, the data payload is also
DWord aligned for both the first and last DWord of data. To achieve this DWord alignment,
DWord byte enable fields within the header indicate whether padding bytes are appended to
either the beginning or ending of the data payload. When a data payload is included in a TLP,
the first byte of data corresponds to the lowest byte address (i.e. closest to zero) and subsequent
bytes of data are in increasing byte address sequence. The TLP may consist of a digest at the
end of the packet. The TLP digest is optional and is used to ensure end-to-end integrity. If
used, the digest field contains an ECRC (end-to-end CRC) that ensurses the contents of the
TLP are properly conveyed from the source of the transaction to its ultimate destination. The
ECRC is a 32-bit value that is generated at the Transaction Layer of the originating device
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and checked at the Transaction Layer of the destination device. It incorporates the entire TLP
Header and if present, the data payload [1].

+0 +1

+2 +3

2l 6ls | al sl 1l ol 7l 6l slalalol1lo| 7l 6l slalalolilolalelslalslalilo

Header

Data Byte 0 Data i Payload
" (Optional) Data Byte N-1
TLP Digest: (Optional)
31 0

Figure 3.1: Generic TLP Format

3.2 TLP Headers

All TLPs consist of a header that contain the basic identifying information for the transaction.
The TLP header may be either three or four DWords in length, depending on the type of
transaction. The format of first DWord for all TLP headers is shown in the Figure 3.2.

+0 +1 +3

+2
3‘ 2

6‘5 4‘3‘2‘1‘0 6‘5‘43‘2‘1‘0 i 5‘4 7‘6‘5‘4‘3‘2‘1‘0

T
D

6

E
P

1L ol

Fmt TC R Attr R Length

Type

Figure 3.2: Format of First DWord for all TLP Headers

TLP fields marked with an R indicate a reserved bit or field. Reserved bits are filled with
0’s during TLP formation and are ignored by receivers. The Fmt field indicates the format of
the TLP itself. The Fmt field indicates the length of the TLP Header. And the type of the
transaction is determined by the combination of the Fmt and Type fields. The following table
shows the assosiated values for the Fmt field [1].

Fmt[1:0] Encoding TLP Format
00b 3 Dword Header, no data payload
01 4 Dword Header, no data payload
10 3 Dword Header, with data payload
11 4 Dword Header, with data payload

11



The TC field indicates the traffic class of the packet. This 3-bit field allows for differentia-
tion of transactions into eight distinct traffic classes. The default traffic class is a value of 000b
indicating traffic class TCO. Values between 001b and 111b in TC field indicates traffic classes
between TC1 and TCT.

The T'D bit indicates whether a TLP digest is provided at the end of the TLP. A value
of 1b in TD field indicates that TLP digest is attached, while a value of Ob indicates that no
TLP digest is present. The EP bit indicates whether a TLP is poisoned. A poisoned TLP is
a known bad TLP that is used for the controlled propogation of an error through the system.

The Attr field contains attributes information for the TLP that allow for traffic handling
optimization. The first bit identifies (bit 5 of byte 2) identifies if PCI-X relaxed ordering applies
to the TLP. The value of Ob at this bit indicates PCI strongly ordered model and the value of
1b indicates that PCI-X relaxed ordering model applies. The second bit of this field (bit 4 of
byte 2) indicates whether cache coherency is required for the transaction.

The Length field indicates the length of the data payload in DWords. The Length field
only identifies the length of the data payload and not of the entire TLP.For example, a value of
0000000001b indicates a data payload that is 1 DWord long. The length of the data payload can
vary from 0 to a maximum of 1024 DWords. The overall size of the TLP can be determined
from Length field, along with the Fmt (indicating whether the TLP header is three or four
DWords) and TD (indicating whether a single DWord digest is attached at the end) fields.

3.2.1 Memory Request Headers

Memory requests are used for normal memory reads, reads to locked memory or for memory
writes. Memory requests are also differentiated by the addressing format, as PCI Express
supports both 32-bit and 64-bit memory addressing. All memory requests have the common
DWord shown in the figure 3.2 as the first DWord of the header. The second DWord for all
memory requests contains the same information: the Requester ID, the Tag and the Byte
Enable fields [1].

+0 +1 ) +3
1 6‘5 4‘3‘2‘1‘0 7 6‘5‘43‘2‘1‘0 71 6 5‘4 3‘2 1‘0‘7‘6‘5‘4‘3‘2‘1‘0
Byte 0 —={ R | Fmt Type R TC R E E Atr | R Length
Byte 4 —| Requester ID Tag Last DW BE| 1st DW BE
Byte 8 —| Address[64:32]
Byte 121 Address[31:2] R

Figure 3.3: 64-bit Address Memory Request Header

The Requester ID field contains the logical bus, device and function number of the requester.
This is a 16-bit value that is unique for every PCI Express function within a hierarchy.

The Tag is an 8-bit field that helps to uniquely identify outstanding requests. The requester
generates a unique tag value for each of its outstanding requests that requires a completion.
Requests that do not require a completion don’t have a tag assigned to them. If a completion
is required, the requester ID and tag value are copied into the completion header. This allows
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T |E
Byte 0 =| R | Fmt Type R TC R D|p | At R Length
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Byte 8 —| Address[31:2] R

Figure 3.4: 32-bit Address Memory Request Header

Requester ID —

7:0 4:0 2:0
Bus Number Device Number  Function
Number

Figure 3.5: Requester ID Format

the system to route that completion packet back to the original requester. The returned tag
value identifies which request the completion packet is responding to. These two values form a
global identification, called as Transaction ID, that uniquely identifies each request with an
accompanying completion. Requests from different devices (of functions within a device) have
different requester IDs and multiple requests (that require a completion) from a single device
function have different tag values.

The Byte Enable fields contain the byte enables for the first and last DWord referenced
by a request TLP. This allows the system to complete data transactions that are not DWord
aligned. The First DW BE field contains the byte enables for the first DWord while the Last
DW BE contains the byte enables for the last DWord of a request. Each bit within the Byte
Enable fields identifies whether its assosiated byte is valid. If the request indicates a length
greater than a single DWord, neither the First DE BE field nor the Last DW BE field can
be 0000b. Both must specify atleast a single valid byte within their respective DWord. If the
request indicates a data length of a single DWord, the Last DW BE field must equal 0000b. If
the request is for a single DWord, the First DE BE field can also be 0000b. A memory read
request of one DWord with no bytes enabled is referred to as a zero length read.

3.2.2 1I/O Request Headers

I/O requests are used for reads or writes to I/O locations. All I/O requests use just the 32-bit
address format. All I/O requests have the common DWord shown in the figure 3.2 as the first
DWord of the header. The second DWord for all I/O requests utilizes the same format as the
second DWord of memory requests, with a Requester ID, Tag and Byte Enables in the exact
same locations. Since, all I/O requests are 32-bit addressed, I/O request headers look similar
to 32-bit addressed memory request headers.

Since, all I/O requests use 32-bit addressing, all I/O request headers are three DWords in

13



length. The TC field must always be 000b for all I/O requests. Likewise, the Attr field must
have a value of 00b and the Last DW BE field must have a value of 0000b. For I/O requests,
the Length field must always have a value of 0000000001b. Figure 3.6 shows the format of the
I/O Request Header.

+0 +1 +2 +3
i 6‘5 4‘3‘2‘1‘0 7 6‘5‘43‘2‘]‘0 71 6 5‘4 3‘2 1‘0 7‘6‘5‘4‘?‘2‘]‘0
TC T g | Attr Length
Byte0 =R | Fmt Type Rlo o0 o R plplo o] R Joo:0 00 000 01
Last DW BE
Byte 4 = Requester ID Tag o 0 o ofstDWBE
Byte 8 —=| Address[31:2] R

Figure 3.6: 1/O Request Header

3.2.3 Configuration Request Headers

Configuration requests are used for reads or writes to Configuration registers of PCI Express
devices. Configuration destinations are differentiated based on their bus, device and function
numbers, so configuration request packets are routed based on the destination ID and not by
address. All configuration requests have the common DWord shown in the figure 3.2 as the first
DWord of the header. The second DWord for all configuration requests uses the same format as
the second DWord of memory and I/O requests, with the Requester ID, Tag and Byte Enables
in the exact same locations. Figure 3.7 shows the format of the Configuration Request Header.

+0 +1 ") +3
7 6‘5 4‘3‘2‘1‘0 7 6‘5‘43‘2‘1‘0 71 6 5‘4 3‘2 1‘0 7‘6‘5‘4‘3‘2‘1‘0
TC T |E | Attr Length
Byte 0= R | Fmt Type Rip 0 o R pjplo o] R Jloo:0o 0 0 00 0 01
Last DW BE
Byte 4 = Requester ID Tag o 0 o of!stDWBE
T
! Device Function Ext. Reg. .
Byte 8 —| Bus Number | Number Number Reserved Number | Register Number R

Figure 3.7: Configuration Request Header

All configuration request headers are three DWords in length. The TC field must always
be 000b for configuration requests. Likewise, the Attr field must have a value of 00b, the
Last DW BE field must have a value of 0000b and the Length field must always have a value
of 0000000001b. The Bus Number, Device Number and Function Number have the
identical format as those used to identify the requester. Register Number and Extended
Register Number fields are located in the third DWord.

3.2.4 Message Headers

Since PCI Express has no sideband signals, all special events must be transmitted as packets
called messages across the PCI Express link. All messages have the common DWord shown in
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the figure 3.2 as the first DWord of the header. The second DWord for all messages uses the
Transaction ID (Requester ID + Tag) in the same location as memory, I/O and configuration
requests. It then adds a message code field to specify the type of message. Figure 3.8 shows
the format of the Message Header.

+0 +1 ") +3
1 6‘5 4‘3‘2‘1‘0 1 6‘5‘43‘2‘1‘0 71 6 5‘4 3‘2 1‘0 7‘6‘5‘4‘3‘2‘1‘0
T g | Atr

Byte 0 —=| R | Fmt Type R TC R plpl oo R Length

Byte 4 —| Requester ID Tag Message Code

Byte 8§ —

Fields in bytes 8 through 15 depend on the type of message
Byte 12—

Figure 3.8: Message Header

Interrupt Messages

PCI Express supports interrupts in two different formats: INTx emulation and Message
Signaled Interrupt (MSI) [1]. MSI interrupt support is required for all PCI Express Devices.
For legacy support, devices can emulate the INTx interrupt model through the use of messages.
For example, a PCI Express to PCI bridge must translate the INTx signals, the bridge sees on
the downstream interface into proper INTx messages on its PCI Express interface. There are
eight distinct INTx messages namely: Assert INTA, Assert INTB, Assert INTC, Assert INTD,
De-assert INTA, De-assert INTB, De-assert INTC and De-assert INTD. They are differentiated
by the Message Code field.

3.3 Completion Packet/Header

Completion packets always contain a completion header and depending on the type of comple-
tion, may contain a number of DWords of data as well. Completion Headers are three DWords
in length and have the common DWord shown in the figure 3.2 as the first DWord of the
header. The second DWord of completion header contains: a completer ID, Completion
Status, Byte Count Modified (BCM) and Byte Count. The third DWord contains the
Requester ID, Tag value and the Lower Address Field. Completion packets are routed
by the Requester ID that was supplied with the original request. The Completer ID field is
a 16-bit value that is unique for every PCI Express function within the hierarchy. It has the
exact same format as the Requester ID. Figure 3.9 shows the format of the Completion Header.

The Completion Status field indicates if the request has been completed successfully. There
are four defined Completion Status responses, as shown in the table below.
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Figure 3.9: Completion Header

Completion Status[2:0] Value Status
000b Successful Completion (SC)
001b Unsupported Request (UR)
010b Configuration Request Retry Status (CRS)
100b Completer Abort
All Others Reserved

A single memory read request may result in multiple completion packets. The Byte Count
field indicates the remaining number of bytes required to complete a memory read request. It
is represented as a binary number with 000000000001b indicating 1 byte and 000000000000b
indicating 4096 bytes. This field is used to indicate how many bytes (including the existing
completion packet) are still to be returned. If a memory read request is completed with multiple
completion packets, the Byte Count field for each successive completiom packet is the value
indicated by the previous packet, minus the number of bytes returned with that packet. This
field is used to help the requester determine if any of the read completion packets are missing.

The BCM field may be used by PCI-X completers to indicate that the Byte Count field has
been modified and is not being used in its normal manner. The Requester ID and Tag fields
are copied from the original request packet. The Attr and TC fields must have the same values
as the originating request. The completion packet is routed back to the requester based on
the Requester ID and the requester then uses the Tag value to identify which request is being
completed. The Lower Address Field indicates the byte address for the first enabled byte of
data returned with a memory read completion. For any completion other than a memory read,
this field must be all Os.
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Chapter 4
Data Link Layer Architecture

The Data Link Layer serves as the gatekeeper for each individual link within a PCI Express
system. It ensures that the data being sent back and forth across the link is correct and received
in same order, it was sent. The Data Link Layer makes sure that each packet makes it across
the link and makes it across intact.

This layer takes TLPs ( Transaction Layer Packets ) from the transmit side of the Trans-
action Layer. It adds a sequence number to the front of the packet and an LCRC (link
CRC) error checker to the tail and then it forwards this packet on to the Physical Layer [1]. For
incoming TLPs, the Data Link Layer accepts the packets from the Physial Layer and checks
the sequence number and LCRC to make sure the TLP is correct. If it is correct, the Data
Link Layer removes the sequence number and LCRC, then passes the TLP upto the receiver
side of the Transaction Layer. If an error is detected, the Data Link Layer does not pass the
bad packet onto the Transaction Layer. Instead, the Data Link Layer communicates with its
link mate to try and resolve the issue through a rety attempt. The Data Link Layer only passes
the TLP to the Transaction Layer, if the packet’s sequence number and the LCRC values check
out.

4.1 Sequence Number

The Data Link Layer assigns a 12-bit sequence number to each TLP as it is passed from the
transmit side of the Transaction Layer [1]. The Data Link Layer applies the sequence number
along with a 4-bit reserved field to the front of the TLP. The transmit side of this layer needs
to implement two simple counters, one indicating what the next transmit sequence number
should be and the one indicating the most recently acknowledged sequence number. When a
sequence number is applied to an outgoing TLP, the Data Link Layer refers to the next sequence
counter for the appropriate value. And after applying the sequence number, Data Link Layer
increments the next sequence counter by one.

The receive side of the Data Link Layer needs to implement a counter for the next receiver
sequence number. If the sequence number of the received TLP matches that counter (and
the LCRC checks), the Data Link Layer then removes the sequence number, reserved bits
and the LCRC. Then, it forwards the incoming TLP onto the receive side of the Transaction
Layer. When this occurs, Data Link Layer increments its next receiver sequence counter. If
the sequence number does not match the value stored in the receiver’s next sequence counter,
the Data Link Layer discards that TLP. The Data Link Layer checks to see if the TLP is a
duplicate. If it is, it schedules an Ack DLLP to be sent out for that packet. If the TLP is not
a duplicate, it schedules a Nak DLLP to report a missing TLP.

The Data Link Layer does not differentiate among types of TLP when assigning the sequence
number. Sequence number is used on a link-by-link basis. A TLP has different sequence
numbers assosiated with it on the various links, it traverses. The TLP header contains all the
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global identifying information but the sequence number only has meaing for a single transmitter
and receiver.

4.2 LCRC

The Data Link Layer protects the contents of the TLP by using a 32-bit LCRC value [1]. The
Data Link Layer calculates the LCRC value based on the TLP received from the Transaction
Layer, the sequence number and the four reserved bits, it has just applied. On the receiver side,
the first step that the Data Link Layer takes is to check the LCRC value. If the calculated LCRC
value does not equal the received value, the TLP is discarded and Nak DLLP is scheduled for
transmission. If the calculated value equals the received value, the Data Link Layer proceeds
to check the sequence number. The LCRC protects the contents of a TLP on a link-by-link
basis.

4.3 Data Link Layer Packets (DLLPs)

DLLPs support link operations and are strictly assosiated with that given link. DLLPs always
originate at the Data Link Layer and are differentiated from TLPs when passed between the
Data Link Layer and Physical Layer. A DLLP is always intended for the device on the other
side of the link. DLLPs have four major types [1]:

e Ack DLLP :TLP sequence number acknowledgement. These indicate a successful re-
ceipt of some number of TLPs.

e Nak DLLP :TLP sequence number negative acknowledgement. These indicate an er-
ror condition (for example, a sequence number or LCRC issue, but do not differentiate
between the two). Include the last successfully received sequence number and initiates a
Data Link Layer retry attempt.

e FC DLLPs :Flow control. The three types of flow control DLLPs are InitFC1, InitFC2
and Update FC. The InitFC1 and InitFC2 are sent during the flow control initialization
for each virtual channel. Update FC packets are sent during normal link operation to
indicate how much buffer space is available for incoming TLPs.

o PM DLLPs :Power Management DLLPs.
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Chapter 5

Physical Layer Architecture

The Physical Layer contains all the necessary digital and analog circuits required to configure
and maintain a link. Next generation frequency changes will only require changing the Physical
Layer. It eases the transition of upgrading the technology by allowing maximum reuse of the
upper layers.

Software

Transaction Layer

Physical Layer

. | Data Link Layer i

Mechanical
(Connectors, wire)

Figure 5.1: Physical Layer Positioning

There are two key sub-blocks that make up the Physical Layer Architecture: a Logical Sub-
block and an Electrical Sub-block [1]. Both sub-blocks have dedicated transmit and receive
paths that allow dual unidirectional communication between two PCI Express devices.

5.1 Logical Sub-Block

The Logical Sub-block is the key decision maker for the Physical Layer. The logical sub-
block has separate transmit and receive paths, referred as transmait unit and receive unit
[1]. Both are capable of operating indepedently of one another. The primary function of the
transmit unit is to prepare packets received from the upper layers for transmission across the
link. This process involves three stages: data scrambling, 8-bit/10-bit encoding and packet
framing. The receive unit takes the deserialized physical packet received from the wire by the
electrical sub-block, removes the framing, decodes it and finally descrambles it.
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Figure 5.2: Physial Architecture Sub-blocks between two PCI Express Devices

5.1.1 Data Scrambling

Data scrambling is performed to reduce the possiblity of electrical resonance on the link. Most
electrical resonance conditions are caused by repeated data patterns at some constant frequency.
To avoid this, the PCI Express Base Specification defines a scrambling/descrambling algorithm.

5.1.2 8-Bit/10-Bit Encoding

The 8-bit/10-bit Encoding process invloves converting a byte (8 bits) of data into an encoded
10-bit data symbol. The primary purpose of 8-bit/10-bit encoding is to embed a clock signal
into the data stream. By embedding a clock into the data, this encoding scheme renders
external clock signals unnecessary. By definition, 8-bit/10-bit encoding allows at most 5 bits
of the same polarity to be transmitted before a bit level transition must occur. A byte value
represented by bits ABCDEFGH is broken into twp separate bit streams, ABC and DEFGH.
Each of these bit streams has a controlled variable appended to it to form a 4-bit and 6-bit
stream respectively. Concatenating the 4-bit stream and the 6-bit stream together forms a 10
bit symbol. So, ABC become IABC and DEFGH become JDEFGH, where I and J are control
variables.

Encoded data byte and special symbols are generally described by code. For instance, the
data byte value 25h is referred to as D5.1 where D stands for Data and 5.1 is related to the
byte value 25h. A byte value represented by bits ABCDEFGH is broken into two separate bit
streams mainly ABC and DEFGH. The code is formed by taking the decimal equivalent of bits
DEFGH, followed by a ”.” and then the decimal equivalent of bits ABC. So, in case of data
byte value 25h (00100101), we get the code as D5.1. Special symbols are coded according to
the same process but prefix K is used instead of prefix D.

A secondary benfit of 8-bit/10-bit Encoding is to provide a mechanism for error detection
through the concept of Running disparity, which is trying to keep the differnce between the
number of transmitted 1s and Os as close to zero as possible.
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Figure 5.3: Logical Sub-Block Primary Stages

5.1.3 Packet Framing

In order to let the receiving device know where one packet starts and ends, there are identifying
10-bit special symbols that are added and appended to an 8-bit/10-bit Encoded data packet.
To end either a TLP or DLLP, the special symbol END is appended as shown in Figure 5.4..

5.2 Electrical Sub-Block

The electrical sub-block functions as the delivery mechanism for the physical link. This block
contains transmit and receive buffers that transform the data into/from electrical signals.

5.2.1 Serial/Parallel Conversion

The transmit buffer in the electrical sub-block takes the encoded packetized data from the
logical sub-block and converts it into serial format. Once the data is serialized, it is then
routed to an assosiated lane for transmission across the link. On the receiver side, the receiver
de-serialize the data and feed it back to the logical sub-block for further processing.
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Figure 5.4: Packet Framing Example
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Chapter 6
Flow Control

PCI Express enacts flow control (FC) mechanisms to prevent receiver buffer overflow. Flow
control is done on a per-link basis, managing the traffic between a device and its link mate.
Flow control mechanism do not manage traffic on an end-to-end basis, as shown in Figure 6.1.

Root
Complex

’m

Flow control is done across a
link, not end-to-end

PCI Express
Endpoint

Figure 6.1: Link by Link Flow Control

In the example in Figure 6.1, the root complex issues a request packet destined for the PCI
Express endpoint and transmits that packet across the outgoing portion of its link to the switch.
The switch then sends that packet across its downstream port to the endpoint. The flow control
mechanisms that PCI Express implements, however, are local to each link. The flow control
block in the root complex only deals with managing the traffic between the root complex and
the switch. The downstream port of the switch and the endpoint then manage the flow control
for that packet between the switch and the endpoint. There are no flow control mechanisms
in the root complex that track the packet all the way down to the endpoint. Link mates share
flow control information to ensure that no device transmits a packet that its link mate is unable
to accept. Each device indicates how many flow control credits it has available for use. If the
next packet allocated for transmission exceeds the available credits at the receiver, that packet
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cannot be transmitted. Within a given link, each virtual channel maintains its own flow control
credit pool.

6.1 Virtual Channels and Traffic Classes

One PCI Express lane consists of many Virtual Channels. Each virtual channel can support
one or multiple Traffic Classes [1]. However, a single traffic class cannot be mapped to
multiple virtual channels. Each virtual channel has its own set of queues and buffers, control
logic and a credit based mecahnism to track how full or empty those buffers are on each side of
the link. PCI Express supports upto eight different traffic classes and so eight different virtual
channels.

6.2 Flow Control Rules

Consider, a Single lane bridge that must service cars in both directions. To get access to the
road, a driver must arbitrate for control of the road with other drivers going both the same
direction and the opposite direction. This is a good representation of how conventional PCI
and PCI-X flow control works. Additionally, once a car gains access to the road, it needs to
determine how fast it can go. If there is a lot of traffic already on the road, the driver has
to throttle his or her advancement to keep from colliding with other cars on the road. PCI
accomplishes this through signals such as IRDY and TRDY.

Now, consider that the road is changed into a highway with four lanes in both directions.
This highway has a carpool lane that allows carpoolers an easier path to travel during rush
hour traffic congestion. There are also fast lanes for swifter moving traffic and slow lanes for
big trucks and other slow moving traffic. Drivers can use different lanes in either direction to
get to a particular destination. Each driver occupies a lane based upon the type of driver he or
she is. Carpoolers take the carpool lane while fast drivers and slow drivers occupy the fast and
slow lanes respectively. This highway example represents the PCI Express flow control model.
Providing additional lanes of traffic increases the total number of cars or bandwidth that can
be supported. This is what is accomplished by adding additional lanes to a PCI Express link.
Prioritizing who gets to use the available bandwidth (especially during high traffic times) is
what virtual channels and traffic classes add to the picture.

6.3 Flow Control Credits

PCI Express uses a Flow Control Credit Model. Data Link Layer Packets (DLLPs) are ex-
changed between link mates indicating how much free space is available for various types of
traffic. This information is exchanged at initialization, and then updated throughout the active
time of the link. The exchange of this information allows the transmitter to know how much
traffic it can allow on to the link, and when the transmitter needs to throttle that traffic to
avoid an overflow condition at the receiver. Flow control differentiates between various types
of TLPs (Transaction Layer Packets) and allocates separate credit pools for each type.

TLPs are divided up into the following types for flow control purposes : posted request
header (PH), posted request data (PD), non-posted request header (NPH), non-
posted request data (NPD), completion header (CplH) and completion data (CplD)
[1]. Posted request credits (Px) apply to message and memory write requests. Non-posted
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request credits (NPx) apply to IO and configuration write, as well as all read requests. Com-
pletion credits (Cplx) apply to the completions associated with a corresponding request. For
the various data credits, the corresponding unit of credit is equal to 16 bytes of data (that is to
say that 1 CplD unit equals 16 bytes of completion data). For the various header credits, the
corresponding unit of credit is the maximum-size header plus TLP digest. Table 6.2, identifies
the credits associated with the various types of traffic.

TLP Credits Consumed

Memory, I/O, configuration read 1 NPH

request

Memory write request 1PH+nPD

/0, configuration write request 1 NPH + 1 NPD (note: size of data written for
these TLPs is never more than one aligned
DWord)

Message request without data 1PH

Message request with data 1PH+nPD

Memory read completion 1 CplH + n CPLD

/0, configuration read completions 1 CplH + 1 CPLD

/0, configuration write completions 1 CplH

Figure 6.2: TLP Flow Control Credits

6.4 Flow Control at the Transmitter

For each credit type, [1] there are two quantities that the transmit side of the Transaction Layer
must check to properly implement flow control:

o Credits-Consumed

o Credits-Limait

Credits-Consumed, which is initially set to 0 after initialization, tracks the total number of
flow control credits that have been consumed by TLPs. Credit-Limit indicates the most recent
number of flow control units legally advertised by a link-mate. This value is first set during
flow control initialization and may be updated via UpdateFC packets.

Prior to transmitting any TLP, the Transaction Layer must first determine if there are
sufficient outstanding credits for that TLP. If the transmitter does not have enough credits, it
must block the transmission of that TLP. This may stall other TLPs that use that same virtual
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channel. If there are not enough flow control credits for transmission of a given transaction,
transactions that use other traffic classes/virtual channels are not impacted.

It should be noted that return of flow control credits does not necessarily mean that the TLP
has reached its final destination or that the associated request/completion has been processed.
It simply means that the buffer or queue space allocated to that TLP at the receiver has been
cleared. In Figure 6.1, the upstream port of the switch may send an UpdateFC that indicates
it has freed up the buffer space from a given TLP that is destined for the endpoint. The root
complex should not imply that this has any meaning other than that the TLP has been cleared
from the upstream receive buffers of the switch. That TLP may be progressing through the
core logic of the switch, may be in the outgoing queue on the downstream port, or may be
already received down at the endpoint.

6.5 Flow Control at the Receiver

For each credit type, there is one quantity that the receiver side of the Transaction Layer must
check to properly implement flow control,

Credits-Allocated. The Transaction Layer may optionally implement a

Credits- Received register/counter [1]. Credits-Allocated is initially set according to the buffer
size and allocation policies of the receiver. This value is included in the InitFC and Update
FC packets that are sent across to a link mate. This value is incremented as the receiver
side of the Transaction Layer frees up additional buffer space by processing received TLPs.
Credits-Received is an optional error checking register or counter. Here, the Transaction Layer
simply counts up all the credits (of a given type) that have been successfully received. If the
receiver implements this option, it can check for receiver overflow errors (TLPs that exceeded
the Credits-Allocated limit).

For finite NPH, NPD, PH, and CplH credit types, an UpdateFC packet must be scheduled
for transmission if all advertised flow control units for a particular type are consumed by received
TLPs. Additionally, for all finite credit types, UpdateFC packets are required if one or more
units of that type are made available by processing received TLPs. UpdateFC packets may be
scheduled for transmission more often than required. For a given implementation, it is possible
that queues need not be physically implemented for all credit types on all virtual channels. For
unimplemented queues, the receiver can advertise infinite flow control during initialization to
eliminate the appearance of tracking flow control credits for that type.

6.6 An Example of Flow Control Credits

At initialization, Device B indicates that it has 04h PH credits and 040h PD credits. Device
A puts those in its PH and PD Credit-Limit counters/registers. After initialization, Device A
has set its PH and PD Credits-Consumed counters/registers to zero. Device A then sends out
two P requests (with sequence numbers 1 and 2) that each utilizes a single PH unit and 10h
PD units. It therefore updates its PH and PD Credits-Consumed counters/registers to 02h and
20h, respectively.

Device A now wants to send out another P request (sequence number 3) that uses a single
PH unit and 30h PD units. In this example, however, the Transaction Layer of Device A must
stop that TLP and not transmit it just yet. For while it has the necessary PH credits for
this transaction, it does not have the proper number of PD credits left. Device B originally
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advertised support for 040h PD units and Device A has already sent out packets that consumed
020h of that. That leaves only 020h credits available, not enough to cover the 030h that TLP
with sequence number 3 requires. Device A must stop this TLP. Once Device B issues an
UpdateFC-P packet that indicates that one or both of the outstanding TLPs (sequence numbers
1 and/or 2) has been cleared from its queues, Device A can release TLP with sequence number
3 and transmit it as appropriate.
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Chapter 7
Proposed Design Outline

The Second Stage of this Project includes the Implementation of FPGA - based PCI / PCI
Express Bridge. The Implementation part includes VHDL Coding for the Design and targeting
the design on FPGA Kit. I am giving the Proposed Design Outline for the Implementation in
Figure 7.1.

P.C.I. Slot

( Device Core )

Parallel Data

Transaction Layer Module

On —= i

FPGA Kit v
Data Link Layer Module

A

Y

Physical Layer Module
1

Serial
Data Y

\j

Logical Analyser

Figure 7.1: Proposed Design Outline for the Implementation

The FPGA Kit is connected to PCI Slot on one side and Logical Analyser on other side.
The VHDL Code on the FPGA Kit consists of 3 modules. These 3 modules are :
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e Transaction Layer Module
e Data Link Layer Module

e Physical Layer Module

Transaction Layer Module is responsible to act as Transaction Layer. It gets Parallel
Data from PCI Slot (Device Core) and identifies the type of Transaction and other information
from other signals from the PCI Slot. It generates the Header accordingly and generates the
ECRC if required. It appends the Header to the front of the Data and ECRC at the end of
the Data. It then passes this packet to Data Link Layer Module. Data Link Layer Module
acts as Data Link Layer. It generates the proper Sequence Number and appends it to the front
of the packet, it has got from Transaction Layer Module. Then, it generates the LCRC for
this packet and appends this LCRC at the end of the packet. It then passes this packet to the
Physical Layer Module, which acts as Physical Layer. It is responsible for 8 Bit/10 Bit
Encoding and Packet framing. Then, it serializes the packet and transmit the serial data to
the Logical Analyser.

Physical Layer Module also receives the serial data from Logical Analyser. It de-serializes
the data, then it removes framing and then do 8 Bit/10 Bit Decoding. It passes this packet
to the Data Link Layer Module. This module checks for LCRC and Sequence Number to
ensure that the packet is correct. If it is not correct, it does not pass the bad packet to the
Transaction Layer Module and do further processing. If it is correct, it removes sequence
number and LCRC, and sends the remaining packet to the Transaction Layer Module. This
module checks for ECRC. Then, it removes ECRC and decodes the Header. It then generates
the Parallel data and accordingly transfers this data and other information to the PCI Slot
(Device Core).
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Chapter 8
Conclusion and Future Work

The adoption of P.C.I. Express will serve as the Point of Inflection that will forever change the
course of events for the computing and communication sectors. The P.C.I. Express Initiative
is on the track and rapidly gaining momentum in the Industry. About 90 percent of the
Computers are still based on P.C.I. So, there is an urgent need to either replace the entire
platform to P.C.I. Express or to develop a Bridge which can convert P.C.I. to P.C.I. Express
and vice versa. So, my future work is to Design and Implement an FPGA-based P.C.I / P.C.L.
Express Bridge.
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