P.C.I. Express

Sushil Chauhan
01005002
Introduction

• High speed, serial pathway.
• Dual – unidirectional paths.
• Bandwidth of 2.5 Gigabits per second per direction.
Benefits of PCI Express

- Layered Architecture.
- Compare maximum theoretical bandwidths.
 - PCI: 32-bit bus at 33 MHz, 132 MB/sec
 - PCI-X: 64-bit bus at 66.66 MHz, 533 MB/sec
 - PCI Express: Bandwidth of 2.5 Gigabits per second per direction and potential for growth to 10 Gigabits/sec/direction.
- Point-to-Point Interconnect.
PCI Express Architecture Overview

- Links and Lanes.
- *Serial links: x1, x2, x4, x8, x12, x16, and x32.*

![Diagram of Link and Lane connections between Device A and Device B]
• PCI Express Device Types
 ❖ Root Complex
 ❖ PCI Express to PCI Bridge
 ❖ Endpoint
 ❖ Switch

• PCI Express Transactions
 ❖ Request and Completion
 ❖ Requester and Completer
PCI Express System Architecture

- CPU
 - Root Complex
 - PCI Express Endpoint
 - PCI Express to PCI Bridge
 - Switch
 - Legacy Endpoint
 - Legacy Endpoint
 - PCI Express Endpoint
 - PCI Express Endpoint
Transaction Types

- Memory Transactions
- I/O Transactions
- Configuration Transactions
- Message Transactions
Architectural Build Layers

- Transaction Layer
- Data Link Layer
- Physical Layer
Transaction Buildup through Architectural Layers

At Transaction Layer

- Header
- Data
- ECRC

- Optional

At Data Link Layer

- Sequence Number
- Header
- Data
- ECRC
- LCRC

At Physical Layer

- Frame
- Sequence Number
- Header
- Data
- ECRC
- LCRC
- Frame

3/14/2005
PCI Express Device A
Transactions:
Memory Req., I/O Req.,
Config. Req., Message Req. and
Completer

Device Core
Transaction Layer Packet

Transaction Layer
Data Link Layer Packet

Data Link Layer
Physical Packet

Physical Layer
Parallel to Serial Conversion
RX
TX

Links and Switches

PCI Express Device B
Transactions:
Memory Req., I/O Req.,
Config. Req., Message Req. and
Completer

Transaction Layer Packet

Data Link Layer Packet

Physical Packet

Parallel to Serial Conversion
RX
TX
Transaction Layer Architecture

- Create PCI Express request and completion transactions.
- Both *Transmit* and *Receive* Functions.
- Receives request data from *Device Core*.
- Receives incoming transactions from *Data Link Layer*.
- Uses Transaction Layer Packets for communication.
Transaction Layer Packet (TLP)

- *Request* and *Completion* Information is communicated.
- Transaction Layer
 - Generates outgoing TLPs.
 - Accepts incoming TLPs.
- Transaction Layer Packet consists of
 - *Header*
 - *Data payload*
 - *TLP Digest* or *ECRC*
Data Link Layer Architecture

- Serves as *gatekeeper* for each individual link.
- Ensures that each packet makes it across the link.
- Takes TLPs from the transmit side of the Transaction Layer.
- Adds a *sequence number* and an *LCRC*.
- Accepts the packets from Physical Layer.
- Checks the sequence number and LCRC.
Data Link Layer Packet (DLLP)

- Originate at the Data Link Layer.
- Intended for the Device on the other side of link.
- DLLPs are of four types:
 - Ack DLLP
 - Nak DLLP
 - FC DLLPs
 - PM DLLPs
Physical Layer Architecture

- Sub-blocks of Physical Layer:
 - Logical Sub-block
 - Electrical Sub-block
- Logical sub-block has separate Transmit Unit and Receive Unit.
- Electrical sub-block has separate Transmit and Receive buffers.
From/To Data Link Layer

Logical Sub-Block

Transmit Unit
- Packet
- Scrambled
- 8-Bit / 10-Bit
- Encoded
- Packet
- Framed

Receive Unit
- Packet
- De-Scrambled
- 8-Bit / 10-Bit
- Decoded
- Framing
- Removed

Transaction Unit

Electrical Sub-Block

Receive Unit
Flow Control

- To prevent receiver buffer overflow.
- Local to each link.

Flow control is done across a link, not end-to-end.
• Virtual Channels.
• Traffic Classes.
• Each VC has its own set of queues and buffers and control logic.
• Supports 8 different Traffic Classes.
• Flow Control Rules.
 - PCI works as *Single Lane Bridge*.
 - PCI Express Flow Control Model works as *Highway with four lanes* in both directions.
• Flow Control at the Transmitter.
 ❖ Credits-Consumed
 ❖ Credits-Limit

• Flow Control at the Receiver.
 ❖ Credits-Allocated
 ❖ Credits-Received

• An Example of Flow Control Credits.
 ❖ B indicates 4 PH Credits and 40 PD Credits.
 ❖ A sends 2 requests, 1 PH + 10 PD units each.
 ❖ Wants to send another request that uses 1 PH and 30 PD credits.
Thank you.