Spanning Tree Protocol And Other Advanced Ethernet Topics

> 2E1623 Data Links and Local Area Networks

Learning Bridges—Loop Problem

Spanning Tree—Basic Idea

- Discover a subset of the topology that is loop-free (a tree)
- Just enough connectivity so that:
 - there is a path between every pair of segments where physically possible
 - the tree is *spanning*
- Disable (block) all other ports

Spanning Tree Starting Point

- Each bridge has a unique ID
- Each port has a unique ID within the bridge
- A *cost* can be calculated for each path between two bridges

From B. A. Forouzan: Data Communications and Networking, 3rd ed, McGraw-Hill

Spanning Tree Process

- 1. The node with the smallest ID is selected the *root bridge*
- 2. On each bridge, select a *root port*
 - Port with the least cost path to the root bridge
- 3. On each LAN segment, select a *designated bridge*
 - Bridge with least cost path to root bridge
 - o If two bridges have same cost, select the bridge with smallest ID
 - Mark the corresponding port as the *designated port*
- 4. Forward frames only on marked ports
 - Designated ports and root ports
 - Block on the others

Before Spanning Tree

Applying Spanning Tree

Forwarding Ports and Blocking Ports

- Note that STP is not a routing protocol
 - In the sense that it does not optimize routing
 - Traffic concentration towards the root

Spanning Tree Protocol

- Protocol to calculate a spanning tree
- Convergence
 - All bridges should reach a unified view of the spanning tree
- Special frames sent between neighbour switches
 - Bridge Protocol Data Units, BPDUs
 - Not forwarded!

Bridge Protocol Data Unit (BPDU)

- Sent as an 802.1 frame
 - Destination MAC address 01-80-C2-00-00 (multicast)
 - BPDU Type 0
- Sent periodically (Hello Time) by root bridges
 - Triggers sending of BPDUs in designated bridges

Initial State

12

Root Bridge Recognized

Designated Bridge Recognized

Ports Disabled

Topology Changes and Learning Table

- Entries in learning table expires
 - Normally after 5 minutes
 - Incorrect forwarding
 - "Black hole"
- Solution:
 - Faster expiration time when network configuration has changed
 - Topology Change Notification PDU

Topology Change Notification

- Topology change at a bridge
 - Port failure
 - No periodic configuration BPDUs
 - Port status change

- Bridge sends spontaneous BPDU
 - Topology Change Notification BPDU
 - BPDU type 0x80

Topology Change

Spanning Tree Protocol Timing

2	1	1	1	8	4	8	2	2	2	2	2
Proto ID	Ver	BPDU Type	Flags	Root ID	Root Path Cost	Bridge ID	Port ID	Msg age	Max Age	Hello Time	Forward Delay

- Protocol is timer driven
- Too short timers can give loops and instabilities
- Too long timers can give long convergence times
 - Until network reaches a stable spanning tree configuration

Designated Bridge Recognized

Ports Disabled

21

Port States

Rapid Spanning Tree Protocol

- Ordinary STP takes 30 50 seconds to converge, with default settings
- Rapid Spanning Tree Protocol (RSTP)
 - IEEE 802.1w
 - Full-duplex mode
 - o No shared links

RSTP vs STP

- RSTP has two more port designations
 - Alternate Port—backup for Root Port
 - Backup port—backup for Designated Port on the segment
- In RSTP, all bridges send BPDUs automatically
 - While in STP, the root triggers BPDUs
- In RSTP, bridges act to bring the network to convergence
 - While in STP, bridges passively wait for time-outs before changing port states

Virtual Local Area Networks

Virtual LANs (VLAN)

- Need a way to divide the LAN into different parts
 - Without physical reconfiguration
- Moving stations without reconfigurations
- Create virtual workgroups
- Keep broadcasts isolated
- Keep different protocols from each other

VLAN Divides LAN Into Logical Groups

From B. A. Forouzan: Data Communications and Networking, 3rd ed, McGraw-Hill

VLAN Grouping

- How is VLAN membership determined?
 - Port number

o Ports 1, 2, 7: VLAN 1

o Ports 3, 4, 5, 6: VLAN 2

- MAC address
- Frame tagging
 - VLAN trunking
 - Many VLANs over the same link

Frame Tagging

- Tag header added to Ethernet header
 - IEEE 802.1Q
- 12-bit VLAN ID allows for 4096 VLANs

Spanning Trees and VLANs

- Per VLAN Spanning Tree
 - One spanning tree per VLAN
 - Many spanning tree instances to maintain
 - Different roots in different STs
 - o load sharing
- Common Spanning Tree
 - One spanning tree for all VLANs
 - Simple, but all traffic goes the same way

Multiple Spanning Tree

- Multiple Spanning Tree Protocol (MSTP)
- Network organized in *regions*
- Regions have their own Multiple Spanning Tree Instances (spanning-tree topologies)
 - VLANs are associated to MSTIs
- One common spanning tree (CST) for the entire network
- MSTP based on RSTP (Rapid STP)

VLAN Signalling

GVRP

Autonegotiation

Ethernet Autonegotiation

- Incompatible rx/tx modes
 - Full/half duplex
 - 10/100/1000 Mb/s
- Autonegotiation to allow two devices to agree on speed and duplex mode
- Based on 10BASE-T "heartbeat"
 - Normal Link Pulse
 - Sent every 16 ms on idle link

Link Code Word

- 100BASE-T "Fast Link Pulse"
- 16-bit code word, with a "Technology ability field" (8 bits)
 - 100BASE-T full duplex
 - 100BASE-T4
 - 100BASE-T
 - 10BASE-T full duplex

••••

- Misconfiguration problems
 - Connectivity loss or performance degradation

Ethernet PAUSE Frames

6 bytes	6 bytes	2 bytes	2 bytes	2 bytes	42 bytes	4 bytes
Destination address	Source address	Type (88-08)	Control operation (00)	Duration	Reserved	CRC

- Flow control
 - Full duplex mode only
 - Negotiated through auto-negotiation
- MAC Control Frame
- Destination address
 - 01:80:C2:00:00:01 (pre-defined multicast address) or address of remote bridge
- Duration is time in units of 512-bit times 36

Quality of Service and Multicast

Quality of Service Switching

- Class of Service
 - User Priority field in IEEE 802.1Q header
 - 0 7, with 7 as highest priority value

DiffServ Packet Marking and Aggregation

- Each packet is marked with a DSCP (Differentiated Services Code Point) directly in the 8-bit IP ToS header field
 - 6 bits used → 64 possible code points (in practice much less is used)
 - Code points are unique within a domain but may change at domain borders
- An ingress node aggregates packets into *behavior aggregates*, each marked by a unique code point (DSCP)

Quality of Service Switching

- QoS processing depends on
 - QoS configuration of port
 - IP DSCP
 - o Ignored, or set to predefined value
 - 802.1Q CoS

 Ignored, set to predefined value, or computed from DSCP

40

Multicast

- Multicast traffic is, by default, flooded
 - Increases traffic load
- Switches implement IGMP Snooping
 - Internet Group Management Protocol
 - Like ICMP
 - o Monitor "Membership Reports" and "Leave Reports"
 - Only forward multicast frames to ports where there are receivers
 - MAC multicast group address is calculated from IP multicast address
 - o 25 static bits (01:00:5e:0) plus last 23 bits from IP address
 - Hashing—multiple IP addresses map to the same MAC address

Summary

- Spanning Tree Protocol
 - Port disabling
 - Bridge PDUs
 - Rapid Spanning Tree Protocol (RSTP)
- VLANs
 - IEEE 802.1Q
 - Multiple Spanning
 Tree Protocol (MSTP)

- Autonegotiation
 - Half/full duplex
 - Speed
 - Flow control
 - • •
- Quality of Service
- Multicast

Reading Instructions

- Behrouz A. Forouzan, "Data Communications and Networking," third edition
 - 14 Local Area Networks: Ethernet
 - o 14.1 Traditional Ethernet
 - o 14.2 Fast Ethernet
 - o 14.3 Gigabit Ethernet
 - 16 Connecting LANs, Backbone Networks, and Virtual LANs
 - o 16.1 Connecting Devices
 - o 16.3 Virtual LANs
- Backes, F., "Transparent bridges for interconnection of IEEE 802 LANs," IEEE Network, Vol. 2, No. 1. 1988