Quiz 2 Solutions

1. What are the two models of interprocess communication? What are the strengths and weakness of
the two approaches?
Ans.
The two models for IPC are:
a. Shared-memory model.
Strength:
1. Shared memory communication is faster the message passing model when the processes are on
the same machine.
Weaknesses:
1. Different processes need to ensure that they are not writing to the same location simultaneously.
2. Processes that communicate using shared memory need to address problems of memory protec-
tion and synchronization.
b. Message-passing model.
Strength:
1. Easier to implement than the shared memory model
Weakness:
1. Communication using message passing is slower than shared memory because of the time
involved in connection setup.

2. Provide two programming examples in which multithreading does not provide better performance
than a single-threaded solution.
Ans.
Example 1:

string filenames[100];

/[* Create threads 1 to 100 */

create_t hreads();

/* each thread creates a particular file on conpletion whose nane
is passed to the programexecuted by the thread */

while (1)

{

not created = FALSE;
for i =0 .. 99

{

if (not(exists(filenane[i])) { not_created = TRUE }
}

if (not_created == FALSE)

{

printf("Done!");

return;

}

}

This is the pseudo code for a multithreaded program which does not perform any better than a
single threaded solution to the same problem.

Example 2:

If the computation times of the processes do not differ significantly, multithreading is not very
useful in comparison to a single-threaded solution.



3. Describe the action taken by a thread library to context switch between user-level threads.
Ans.
To context switch between user-level threads, the thread library saves the context of the old thread
in its TCB and loads the saved context of the new thread. The TCB contains the Stack Pointer,
Program Counter, Register values and the current state of the thread.

4. Which of the following components of program state are shared across threads in a multithreaded
process?
a. Register values
b. Heap memory
c. Global variables
d. Stack memory

Ans.
b. Heap memory and
d. Global variables.

5. Consider a multiprocessor system and multithreaded program written using the many-to-many
threading model. Let the number of user-level threads in the program be more than the number of
processors in the system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than the number of processors.
Ans.

Each kernel thread can be run on a separate processor simultaneously along with the other kernel
threads. Though the number of user level threads is more than the number of processors, the
number of these threads of a particular process than can be run parallelly is constrained by the
number of kernel threads. Since the number of these kernel threads is less than the number of
processors, some of the CPUs are left idle.

b. The number of kernel threads allocated to the program is equal to the number of processors.
Ans.

Each kernel thread can handle an user level thread. Since the number of kernel threads is equal
to number of processors each of them can run on a separate processor. If any thread performs a
blocking system call, there are no more kernel threads that can be used to map a waiting user level
thread. Thus, though there is an idle CPU, it cannot be used by this process.

c. The number of kernel threads allocated to the program is greater than the number of processors
but less than the number of user-level threads.

Ans.

In case of the blocking system call mentioned in (b) above, a waiting user level thread (mapped
to a kernel thread) can be run on the CPU. This improves performance. Thus, the idle time of the
CPU is reduced.

6. Discuss how the following pairs of scheduling criteria conflict in certain settings.
a. CPU utilization and response time
Ans.
In order to increase the CPU utilization, the CPU should be used for performing user jobs (rather
than for book-keeping activities). Thus, the time slices should be longer. This causes the scheduler
to execute infrequently. Thus, a new process that enters the system will stay longer in the ready
queue before being allocated the CPU. This causes an increase in the response time.

b. Average turnaround time and maximum waiting time
Ans.



Turnaround time is the amount of time between the arrival of the job and its completion. Waiting
time is the amount of time spent in the ready queue. In order to decrease the maximum waiting
time for each process, the time slices should be short. This results in a larger number of context
switches and thus an increase in the turnaround time for each job. Thus there is a conflict.

c. 1/0 device utilization and CPU utilization

Ans.

Consider a system with a single 1/O bound process and a large number of CPU bound processes.
The 1/0 bound process typically has many very short CPU bursts. After finishing an 1/0 burst, the
1/0 bound process enters the ready queue. Since there are a large number of CPU bound processes,
the CPU device is busy running one of these processes. Since the I/O bound process has a very
short CPU burst, in order to increase 1/0O device utilization, the scheduler should preempt one of
the CPU bound processes and allot the CPU to run the short burst of the 1/0 bound process. This
happens as frequently as the CPU burst of the 1/0 bound process occurs. Thus, an attempt to
increase the 1/0 device utilization causes context switches which are wasteful in terms of CPU
utilization. The CPU utilization would be higher if the CPU bound jobs are not preempted.

7. Which of the following scheduling algorithms could result in starvation? Explain why.
a. First-come, first-served
b. Shortest job first
c. Round robin
d. Priority
Ans.
a. Shortest job first and
b. Priority scheduling algorithm can result in starvation.

8. The traditional UNIX scheduler enforces an inverse relationship between priority number and pri-
orities: The higher the number, the lower the priority. The scheduler recalculates process priorities
once per second using the following function:

Priority = (recent CPU usage / 2) + base

Where base = 60 and recent CPU usage refers to a value indicating how often a process has used
the CPU since priorities were last recalculated. Assume that recent CPU usage for P1 is 40, pro-
cess P2 is 18,and process P3 is 10. What will be the new priorities for these three processes when
priorities are recalculated? Based on this information, does the traditional UNIX scheduler raise
or lower the relative priority of a CPU-bound process?

Ans.

Priority(P1) = 80

Priority(P2) = 69

Priority(P3) = 65

The relative priority of a CPU-bound process is decreased as a result of this recalculation.

9. A real time system has four periodic processes:

P1 with computation time 20 and period 40
P2 with computation time 60 and period 500
P3 with computation time 5 and period 20
P4 with computation time 12 and period 100



10.

11.

12.

Is this task set schedulable on a uniprocessor? Using what priority assignment algorithm is it
schedulable? Explain your answer.

Ans.

For the task set to be schedulable, the following condition must hold:

cClt C2 (C3 4
Pl P2 P3 T Pa
20 60 5 12
=10 T500 " 20 T 100
=0.54+0.124+0.25 +0.12

=099 <1

The processes can be scheduled using Earliest Deadline First algorithm.

Under what circumstances will the “booting” sequence fail? Indicate how we can ensure that
“re”boot will eventually succeed.

Ans.

Booting fails when:

a. POST (Power On Self Test fails) because the necessary hardware requirements are not met.

b. The boot sector of the Operating System is corrupted.

Booting can be made to succeed by providing the necessary hardware and providing a valid
bootable device to boot from.

Are there any differences in OS to mouse driver interactions for an optical mouse vs. a mechanical
mouse with a roller ball? Explain why (not)?

Ans.

There are no differences between OS to mouse driver interactions in the two cases. The mouse
driver which receives the data representing the movement of the mouse ensures that an uniform
interface is provided to the OS in both these cases.

The states a thread can be in are the same as that for a process. True or false? Explain.

Ans.

True.

Like a process, a thread can be in any one of several states: running, blocked, ready, or terminated.
A running thread currently has the CPU and is active. A blocked thread is waiting for some event
to unblock it. For example, when a thread performs a system call to read from the keyboard, it is
blocked until input is typed. A thread can block waiting for some external event to happen or for
some other thread to unblock it. A ready thread is scheduled to run as soon as it gets the CPU. The
transitions between thread states are the same as the transitions between process states.



