Let \(x_0 \) be an extreme point. Suppose it is given by:

\[
A' x_0 = b', A'' x_0 < b''
\]

From lecture 11 we know that the neighbours of \(x_0 \) are along the columns of \(-A'^{-1}\).

1 Proof of correctness of Simplex algorithm

Theorem 1 If the cost decreases along the columns of \(-A'^{-1}\) then \(x_0 \) is optimal.

Proof: The columns of \(-A'^{-1}\) span \(R^n \). Let \(x_{opt} \) be an optimal point i.e. \(c^T x_{opt} \geq c^T x_0 \) then we need to show that \(c^T x_{opt} \leq c^T x_0 \) to establish \(c^T x_{opt} = c^T x_0 \) and hence \(x_{opt} = x_0 \). Since the columns of \(-A'^{-1}\) are a basis the vector \(x_{opt} - x_0 \) can be represented as a linear combination of them.

\[
x_{opt} - x_0 = \sum \beta_j (-A'^{-1})^j
\]

Now consider \(A'(x_{opt} - x_0) \)

\[
A' x_{opt} - A' x_0 = \sum \beta_j A'(-A'^{-1})^j
\]

We know that \(A' x_{opt} \leq b' and A' x_0 = b' \) hence \(A'(x_{opt} - x_0) \leq 0 \). Also note that \(A'(-A'^{-1})^j \) is an \(n \times 1 \) vector whose \(j^{th} \) element is -1 and remaining elements are 0. Hence

\[
A' x_{opt} - A' x_0 = \begin{pmatrix}
-\beta_1 \\
-\beta_2 \\
\vdots \\
-\beta_n
\end{pmatrix}
\]

\[
\Rightarrow \forall j \beta_j \geq 0
\]

From the discussion above we infer that \(\beta_j \geq 0 \) for each \(j \).

Now consider

\[
c^T x_{opt} - c^T x_0 = \sum \beta_j c^T(-A'^{-1})^j
\]

Since the cost decreases along the columns of \(-A'^{-1}\) we have \(c^T(-A'^{-1})^j \leq 0 \) and since \(\beta_j \geq 0 \) we conclude that \(\sum \beta_j c^T(-A'^{-1})^j \leq 0 \)

Hence \(c^T x_{opt} \leq c^T x_0 \) but we know that \(c^T x_{opt} \geq c^T x_0 \) and \(c^T x_{opt} = c^T x_0 \).

\(\square \)
Note: Using the above theorem we can now state that when the Simplex Algorithm terminates it gives us an optimal solution.

2 Introduction to Duality theorem

Let \(x_0 \) be an optimal point. Using the termination condition of Simplex Algorithm we know that cost decreases along the columns of \(-A'^{-1}\). In other words,

\[
c^T(-A'^{-1}) = (\gamma_1, \gamma_2, ..., \gamma_n), \gamma_i \leq 0
\]

or

\[
c^T(A'^{-1}) = (y_1, y_2, ..., y_n), y_i \geq 0
\]

\[
c^T(A'^{-1}A') = y^T A'
\]

\[
c^T = y^T A'
\]

We observe that at the optimal point the cost vector can be written as a non-negative linear combination of the rows of \(A' \). This means that \(x_0 \) is optimal iff \(x_0 \) is feasible and the cost can be written as a non-negative linear combination of the rows of \(A' \).

Figure 1: \(a, a', b, b' \geq 0 \). Cost can be written as a positive linear combination of normals to the hyperplanes.

The rows of \(A' \) are also the direction normals to the respective hyperplanes. So a restatement of the above is as follows. Suppose \(x_0 \) is an extreme point given by the intersection of \(n \) linearly independent hyperplanes then the cost vector can be written as a non-negative linear combination of the normals to these hyperplanes.
Now consider all the points (not necessarily feasible) given by the intersection of \(n \) linearly independent hyperplanes where the cost vector can be written as a positive linear combination of the normals. We will show that among such points only the feasible point will have the lowest cost.

Consider the feasible point \(x_0 \) and any other point say \(x \) satisfying the above requirements, then \(x - x_0 \) can be written as a positive linear combination of the columns of \(A' \) where

\[
A' x = b', A'' x < b''
\]
(11)

Note that the cost decreases along the columns of \(-A'^{-1} \). Following the steps of the proof of the previous theorem one can show that \(x - x_0 \) can be written as a non negative linear combination of the columns of \(-A'^{-1} \). Since the cost decreases along the columns of \(-A'^{-1} \), the cost at \(x \) is at least the cost at \(x_0 \).

We also note that at such points the cost is \(c^T x = y^T A' x = y^T b' \).

This motivates the definition of the following LP called the dual:

\[
\begin{align*}
\text{minimize : } & y^T b \\
A^T y & = c \\
y & \geq 0
\end{align*}
\]
(12-14)