Lecture 5: Linear algebra : column space of matrix A, solution space of

 $A x=0$, relationship between themLecturer: Sundar Vishwanathan
Computer Science \& Engineering
Computer Science \& Encinering

Last Lecture : Given vectors $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ the space spanned by them is $\sum_{i=1}^{n} \alpha_{i} v_{i}$. Thus $\sum_{i=1}^{n} \alpha_{i} v_{i}$ is a subspace.
Consider the space of vectors $\{x: A x=\overline{0}\}$.
Looking by the column perspective

$$
A x=b \Rightarrow A^{1} x_{1}+A^{2} x_{2}+\ldots+A^{n} x_{n}=b
$$

here, A^{i} is the $i^{t h}$ column of A and x_{i} is the $i^{t h}$ component of vector x which means b is in the column space of A. Hence, in the given situation

$$
A^{1} x_{1}+A^{2} x_{2}+\ldots+A^{n} x_{n}=\overline{0}
$$

Assume : $A^{1}, A^{2}, \ldots, A^{k}$ are a basis for the space spanned by $A^{1}, A^{2}, \ldots, A^{n}, k \leq n$. which implies,

$$
\begin{gathered}
A^{k+1}=\sum_{j=1}^{k} \alpha_{j}^{k+1} A^{j} \\
A^{k+2}=\sum_{j=1}^{k} \alpha_{j}^{k+2} A^{j} \\
\cdots \\
A^{n}=\sum_{j=1}^{k} \alpha_{j}^{n} A^{j}
\end{gathered}
$$

hence, dimension of this space is atleast $n-k$

$$
\operatorname{dim}\{x: A x=\overline{0}\} \geq n-k
$$

now, to prove that it is EXACTLY $n-k$.
Proof: Take an x_{0} such that $A x_{0}=\overline{0}$. Also let U_{i} be such that,
U_{k+1} is

$$
\left(\begin{array}{c}
\alpha_{1}^{k+1} \\
\alpha_{2}^{k+2} \\
\vdots \\
\alpha_{k}^{k+1} \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

U_{k+2} is

$$
\left(\begin{array}{c}
\alpha_{1}^{k+2} \\
\alpha_{2}^{k+2} \\
\vdots \\
\alpha_{k}^{k+2} \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Now consider the vectors x and x such that,

$$
\begin{gathered}
x=\left[x_{1} \ldots x_{n}\right]^{T} \\
x \prime=x-\left\{x_{k+1} U_{k+1}+\ldots+x_{n} U_{n}\right\}
\end{gathered}
$$

but

$$
\begin{gathered}
A x=\overline{0} \quad \text { and } \\
A\left\{x_{k+1} U_{k+1}+\ldots+x_{n} U_{n}\right\}=\overline{0}
\end{gathered}
$$

because given that, x and U_{i} are from the null space of A. Therefore

$$
A x \prime=\overline{0}
$$

note that because of way in which $x \prime$ is defined, its last $n-k$ components are zero. Hence above equation means that the combination of first k columns is also zero. Since the first k columns are linearly independent, therefore, the linear combination is trivial.Hence,

$$
x_{1}^{\prime \prime}=x_{2} \prime=\ldots=x_{n} \prime
$$

therefore, the dimension of $\left\{x: A x_{0}=\overline{0}\right\}$ is EXACTLY $n-k$.
In the next lecture, we will analyse the row perspective.

