Waveletsfor Computer Graphics: A Primer
Part 17

Eric J. Sollnitz

Tony D. DeRose  David H. Salesin

University of Washington

1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow afunction to be described interms of acoarse
overall shape, plus detailsthat range from broad to narrow. Regard-
less of whether the function of interestisanimage, acurve, or asur-
face, wavelets offer an elegant technique for representing the levels
of detail present. Thisprimer isintended to provide people working
in computer graphics with some intuition for what wavelets are, as
well asto present the mathematical foundations necessary for study-
ing and using them. In Part 1, we discuss the simple case of Haar
waveletsin one and two dimensions, and show how they can be used
for image compression. In Part 2, we will present the mathematical
theory of multiresolution analysis, then devel op splinewaveletsand
describe their use in multiresolution curve and surface editing.

Although wavelets have their roots in approximation theory [5] and
signal processing [13], they have recently been applied to many
problems in computer graphics. These graphics applications in-
clude image editing [1], image compression [6], and image query-
ing [10]; automatic level-of-detail control for editing and render-
ing curves and surfaces [7, 8, 12]; surface reconstruction from con-
tours[14]; and fast methods for solving simulation problemsin ani-
mation [11] and global illumination [3, 4, 9, 15]. For adiscussion of
wavel ets that goes beyond the scope of this primer, werefer readers
to our forthcoming monograph [16].

We set the stage here by first presenting the simplest form of
wavelets, the Haar basis. We cover one-dimensional wavelet trans-
forms and basis functions, and show how these tools can be used to
compress the representation of a piecewise-constant function. Then
we discuss two-dimensional generalizations of the Haar basis, and
demonstrate how to apply these wavelets to image compression.

Because linear algebrais central to the mathematics of wavelets, we
briefly review important concepts in Appendix A.

2 Waveletsin onedimension

The Haar basis is the simplest wavelet basis. We will first discuss
how a one-dimensional function can be decomposed using Haar
wavelets, and then describe the actual basis functions. Finaly, we
show how using the Haar wavel et decomposition leadsto a straight-
forward technique for compressing a one-dimensional function.

2.1 Onedimensional Haar wavelet transform

To get asensefor how waveletswork, let’sstart with asimple exam-
ple. Suppose we are given aone-dimensional “image” with areso-
lution of four pixels, having values

[9 7 3 5]
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We can represent this image in the Haar basis by computing a
wavelet transform. To do this, we first average the pixels together,
pairwise, to get the new lower resolution image with pixel values

[8 4]

Clearly, some information has been lost in this averaging process.
Torecover the original four pixel valuesfrom the two averaged val-
ues, we need to store some detail coefficients, which capture the
missing information. In our example, we will choose 1 for the first
detail coefficient, since the average we computed is 1 less than 9
and 1 morethan 7. Thissingle number allows usto recover thefirst
two pixels of our origina four-pixel image. Similarly, the second
detail coefficientis —1,since4+(—1)=3and4 — (—1) =5.

Thus, we have decomposed the original image into a lower resolu-
tion (two-pixel) version and a pair of detail coefficients. Repeating
this process recursively on the averages gives the full decomposi-
tion:

Resolution Averages Detail coefficients
4 [9 7 3 5]
2 [8 4] [1 —1]

1 [6] [2]

Finally, wewill definethewavel et transform (also called thewavel et
decomposition) of the original four-pixel image to be the single co-
efficient representing the overall average of the original image, fol-
lowed by the detail coefficients in order of increasing resolution.
Thus, for the one-dimensional Haar basis, the wavelet transform of
our original four-pixel imageis given by

[6 2 1 —1]

The way we computed the wavelet transform, by recursively aver-
aging and differencing coefficients, iscalled afilter bank—a process
we will generalize to other types of wavelets in Part 2 of our tuto-
rial. Notethat no information hasbeen gained or lost by thisprocess.
Theorigina image had four coefficients, and so does the transform.
Also note that, given the transform, we can reconstruct theimage to
any resolution by recursively adding and subtracting the detail co-
efficients from the lower resolution versions.

Storing the image’s wavel et transform, rather than the image itself,
has a number of advantages. One advantage of the wavelet trans-
form is that often alarge number of the detail coefficients turn out
to be very small in magnitude, asin the example of Figure 1. Trun-
cating, or removing, these small coefficients from the representa-
tion introduces only small errorsin the reconstructed image, giving
aform of “lossy” image compression. We will discuss this particu-
lar application of wavelets in Section 2.3, after we present the one-
dimensional Haar basis functions.
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Figure 1 A sequence of decreasing-resolution approximations to a
function (left), along with the detail coefficients required to recapture
the finest approximation (right). Note that in regions where the true
function is close to being flat, a piecewise-constant approximation
works well, so the corresponding detail coefficients are relatively
small.

2.2 Onedimensional Haar wavelet basisfunctions

We have shown how one-dimensional images can be treated as se-
quences of coefficients. Alternatively, we can think of images as
piecewise-constant functions on the half-open interval [0, 1). To do
so, we will use the concept of avector space from linear algebra
A one-pixel imageisjust afunction that is constant over the entire
interval [0,1). We'll let V° be the vector space of all these func-
tions. A two-pixel image has two constant pieces over the inter-
vas[0,1/2) and [1/2,1). We'll call the space containing all these
functions V. If we continue in this manner, the space V! will in-
clude all piecewise-constant functions defined on the interval [0, 1)
with constant pieces over each of 2 equal subintervals.

We can now think of every one-dimensional imagewith 2 pixelsas
an element, or vector, in\!'. Note that because these vectors are all
functions defined on the unit interval, every vector inV' isalso con-
tained in VI*1, For example, we can always describe a piecewise-
constant function with two intervals as a piecewise-constant func-
tion with four intervals, with each interval in the first function cor-
responding to a pair of intervals in the second. Thus, the spacesV!
are nested; that is,

VecvicVvic ..

The mathematical theory of multiresolution analysis requires this
nested set of spacesV!. Wewill consider thistopic more thoroughly
inPart 2.

Now we need to define a basis for each vector spaceV'. The basis
functions for the spaces V! are called scaling functions, and are usu-
ally denoted by the symbol ¢. A simple basisfor V! is given by the
set of scaled and translated “box” functions:

P = p@x—i), i=0,...,2 -1,

where

o 1 for0<x<1
¢09 = { 0 otherwise.

Asan example, Figure 2 shows the four box functions forming a ba-
sisfor V2.

The next step is to choose an inner product defined on the vector
spaces V. The “standard” inner product,

1
(19 = / (4 g)
0

for two elementsf,g € V! will do quite well for our running ex-
ample. We can now define anew vector spaceW as the orthogonal

complement of V! in V*1. In other words, wewill let W be the space
of al functionsinVi*! that are orthogonal toall functionsinV/ under

the chosen inner product. Informally, we can think of the wavelets
inW as ameans for representing the parts of afunction inVi** that

cannot be represented in /.

A collection of linearly independent functi onSz/z{ (X) spanning W are

called wavelets. These basis functions have two important proper-

ties:

1. The basisfunctionsy! of W, together with the basis functions |
of VI, form abasis for Vi,

2. Every basis function z/;{ of W is orthogonal to every basis func-
tion ¢! of VJ under the chosen inner product*

Thus, the “detail coefficients’ of Section 2.1 are really coefficients
of the wavelet basis functions.

The wavelets corresponding to the box basis are known astheHaar
wavelets, given by
Y = p@x—10),  i=0,...

where

-1 forl/2<x<1

1 for0<x<1/2
Y = ,
0 otherwise.

Figure 3 shows the two Haar wavelets spanning W:.

Before going on, let’s run through our example from Section 2.1
again, but now applying these more sophisticated ideas.

We begin by expressing our original imageZ(x) as a linear combi-
nation of the box basis functionsinV2:

ZI(X) = G po(d) + G i) + CGP5(X) + C5B5(X).

1Some authors refer to functions with these properties aspre-wavelets

reserving theterm “wavelet” for functions:/z{ that are also orthogonal to each
other.
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Figure 2 The box basis for V2.
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Figure 3 The Haar wavelets for WL.
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A more graphical representation is
I = 9 x 1
+ 7 X [ l
+ 3 x [ l
+ 5 x [ 1
Note that the coefficients c3, . . ., c3 are just the four original pixel
values[97 3 5].

We can rewrite the expression for Z(x) in terms of basis functions
in V! and WA, using pairwise averaging and differencing:

I = ds() + croi(d) + dyhg(x) + dii(¥)
= 8 x [ |
v o4 x —
+ 1 x I__l
+ -1 X I__I

These four coefficients should ook familiar as well.

Finally, we'll rewrite Z(x) as a sum of basis functions in V°, WP,
and W

I() = chpo() + dgvg(d + dgeg(9 + di i(¥)

= 6 x |
+ 2 x I
+ 1 x —
|
+ -1 x ]
1

Once again, these four coefficients are the Haar wavelet transform
of the original image. The four functions shown above constitute
the Haar basis for V2. Instead of usi ng the usual four box functions,
we can use ¢, 13, ¥, and 7 to represent the overall average, the
broad detail, and the two types of finer detail possiblein afunction
in V2. The Haar basis for V! withj > 2 includes these functions as
well as narrower trandates of the wavelet ().

Orthogonality

The Haar basis possesses an important property known asorthog-
onality, which is not always shared by other wavelet bases. An or-
thogonal basisis onein which all of the basisfunctions, in this case
$9, 90,15, ¥1, . . ., areorthogonal to one another. Notethat orthogo-
nality isstronger than the minimum requirement for waveletsthaty!
be orthogonal to all scaling functions at the same resolution levelj.

Normalization

Another property that is sometimes desirable isnormalization. A
basis function u(x) is normalized if (u|u) = 1. We can normalize
the Haar basis by replacing our earlier definitions with

Plx) = 272p@x i)
W) = 272 y@x - ),

where the constant factor of 2/2 is chosen to satisfy (u|u) = 1 for
the standard inner product. With these modified definitions, the new
normalized coefficients are obtained by multiplying each old coef-
ficient with superscript j by 27172, Thus, in the example from the
previous section, the unnormalized coefficients [6 2 1 —1] become
the normalized coefficients

(62 5 %]

As an dternative to first computing the unnormalized coefficients
and then normalizing them, we can include normalization in the de-
composition algorithm. The following two pseudocode procedures
accomplish this normalized decomposition:

procedure DecompositionStep(C: array [1.. h] of reals)
fori < 1toh/2do
C'[i] « (C[2i — 1] +C[2])/V2
C'[h/2 +i] « (C[2i — 1] — C[2i])/v/2
end for
C«+C
end procedure

procedure Decomposition(C: array [1..h] of reals)
C « C/vh (normalize input coefficients)
whileh > 1do
DecompositionStep(C[1. . h])
h+ h/2
end while
end procedure

Now we can work with an orthonormal basis, meaning one that is
both orthogonal and normalized. Using an orthonormal basis turns



out to be handy when compressing a function or an image, which
we describe next.

2.3 Application I: Compression

The goa of compression is to express an initial set of data using
some smaller set of data, either with or without loss of information.
For instance, suppose we are given a function f (x) expressed as a
weighted sum of basisfunctionsui(x), . . ., Um(X):

f(x) = Zq ui(%).
i=1

The data set in this case consists of the coefficientscy, . . ., cn. We
would liketo find afunction approximatingf (x) but requiring fewer
coefficients, perhaps by using adifferent basis. That is, given auser-
specified error tolerance e (for lossless compression, e = 0), we are
looking for

=) aae
i=1

such that M < mand ||f(x) — f(x)|| < e for some norm. In general,
you could attempt to construct aset of basisfunctionst, . . . , U that
would provide agood approximation with few coefficients. Wewill
focus instead on the simpler problem of finding a good approxima-
tion in afixed basis.

One form of the compression problem is to order the coeffi-
cientscy, ..., Cm SO that for every m < m, the first m elements of
the sequence give the best approximation f(x) to f(x) as measured
in the L? norm. As we show here, the solution to this problem is
straightforward if the basis is orthonormal, as is the case with the
normalized Haar basis.

Let o be a permutation of 1,...,m, and let f(X) be afunction that
uses the coefficients corresponding to the firstriy numbers of the per-
mutation o

m
0 =D Copy Uop)-
i=1

The square of the L2 error in this approximation is

(00 = F [ £ — ()

m m
<Z Cor (i) Uor (i) Z Co (i) UG(J')>

IF0 = Fe);

i=itL j=l
m m
=) ) G &0 (U | Us)
=l j=mel
m
— 2
=) (o)
i=mtl

Thelast step follows from the assumption that the basisis orthonor-
mal, so (Ui |u) = &j. We conclude that to minimize this error
for any given m, the best choice for ¢ is the permutation that sorts
the coefficients in order of decreasing magnitude; that is, o satis-
fies|co| > -+ > [Com]-

Figure 1 demonstrated how a one-dimensional function could be
transformed into coefficients representing the function’s overall av-
erage and various resolutions of detail. Now we repeat the process,
this time using normalized Haar basis functions. We can apply L?
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Figure 4 Coarse approximations to a function obtained usingL2
compression: detail coefficients are removed in order of increasing
maghitude.

compression to the resulting coefficients simply by removing or ig-
noring the coefficients with smallest magnitude. By varying the
amount of compression, we obtain a sequence of approximations to
the original function, as shown in Figure 4.

3 Waveletsin two dimensions

In preparation for image compression, we need to generalize Haar
waveletsto two dimensions. First, we will consider how to perform
awavelet decomposition of the pixel vaues in a two-dimensional
image. We then describe the scaling functions and wavelets that
form atwo-dimensional wavelet basis.

3.1 Two-dimensional Haar wavelet transforms

There are two ways we can use wavelets to transform the pixel val-
ues within an image. Each is a generalization to two dimensions of
the one-dimensional wavelet transform described in Section 2.1.

To obtain the standard decomposition[2] of animage, wefirst apply
the one-dimensional wavelet transform to each row of pixel values.
This operation gives us an average value along with detail coeffi-
cientsfor each row. Next, we treat thesetransformed rowsasif they
werethemselves an image and apply the one-dimensional transform
to each column. The resulting values are all detail coefficients ex-
cept for a single overall average coefficient. The algorithm below
computes the standard decomposition. Figure5illustrates each step
of its operation.

procedur e StandardDecomposition(C: array [1..h, 1..w] of reals)
for row < 1tohdo
Decomposition(C[row, 1..w])
end for
for col + 1towdo
Decomposition(C[1. . h, col])
end for
end procedure

The second type of two-dimensional wavelet transform, called the
nonstandard decomposition, alternates between operations on rows
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Figure5 Standard decomposition of an image.

and columns. First, we perform one step of horizontal pairwiseaver-
aging and differencing on the pixel valuesin each row of theimage.
Next, we apply vertical pairwise averaging and differencing to each
column of theresult. To completethe transformation, werepeat this
processrecursively only on the quadrant containing averagesin both
directions. Figure 6 shows al the stepsinvolved in the nonstandard
decomposition procedure below.

procedur e NonstandardDecomposition(C: array [1..h, 1..h] of reals)
C <+ C/h (normalize input coefficients)
whileh > 1do
for row «+— 1tohdo
DecompositionStep(C[row, 1. .. h])
end for
for col «+ 1tohdo
DecompositionStep(C[1. . h, col])
end for
h+ h/2
end while
end procedure

3.2 Two-dimensional Haar basisfunctions

The two methods of decomposing a two-dimensional image yield
coefficients that correspond to two different sets of basis functions.
The standard decomposition of an image gives coefficientsfor aba-
sis formed by the standard construction [2] of a two-dimensional

basis. Similarly, the nonstandard decomposition gives coefficients
for the nonstandard construction of basis functions.

The standard construction of atwo-dimensional wavelet basis con-
sists of all possible tensor products of one-dimensional basis func-
tions. For example, when we start with the one-dimensional Haar
basis for V2, we get the two-dimensional basis for V2 shown in Fig-
ure?7. Notethat if we apply the standard construction to an orthonor-
mal basisin one dimension, we get an orthonormal basis in two di-
mensions.

The nonstandard construction of atwo-dimensional basis proceeds

transform rows

transform
columns

Figure 6 Nonstandard decomposition of an image.
by first defining a two-dimensional scaling function,

Pp(x.Y) = ¢(X) B(Y),

and three wavelet functions,

dP(X,Y) = ¢(X) P(y)
Yo(X,Y) = P(X) H(Y)
PP(X,Y) = P(X) P(y).

We now denote levels of scaling with asuperscriptj (aswedidinthe
one-dimensional case) and horizontal and vertical translations with
apair of subscriptsk and ¢£. The nonstandard basis consists of asin-
gle coarse scaling function ¢¢8‘0(x, Y):=¢p(X,y) along with scales
and trangdlates of the three wavelet functions ¢, ¥¢, and ¢i):

oY) = 20p@x—k 2y — 1)
bola(y) = 2up@x—k 2y —0)
Pl (xy) = 299@x—k 2y —0).

The constant 2 normalizes the wavelets to give an orthonormal ba-
sis. The nonstandard construction resultsin the basis for V2 shown
in Figure 8.

We have presented both the standard and nonstandard approaches
to wavelet transforms and basis functions because both have advan-
tages. The standard decomposition of an image is appealing be-
cause it smply requires performing one-dimensional transforms on
all rows and then on al columns. On the other hand, it is slightly
more efficient to compute the nonstandard decomposition. For an
m x mimage, the standard decomposition requires 4% — m) as-
signment operations, while the nonstandard decomposition requires
only $(n? — 1) assignment operations.

Another consideration is the support of each basis function, mean-
ing the portion of each function’s domain where that functionisnon-
zero. All nonstandard Haar basis functions have sguare supports,
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Figure 7 Standard construction of atwo-dimensional Haar wavelet
basis for V2. In the unnormalized case, functions are +1 where plus
signs appear, —1 where minus signs appear, and 0 in gray regions.

while some standard basis functions have nonsquare supports. De-
pending upon the application, one of these choices may be prefer-
able to the other.

3.3 Application II: Image compression

We defined compression in Section 2.3 as the representation of a
function using fewer basis function coefficients than were origi-
nally given. The method we discussed for one-dimensional func-
tions applies equally well to images, which we treat as the coeffi-
cients corresponding to a two-dimensional piecewise-constant ba-
sis. The approach presented here is only introductory; for a more
complete treatment of wavelet image compression, see the article
by DeVoreet al. [6].

We can summarize wavelet image compression using thel.? norm
in three steps:

1. Compute coefficientscy, . . ., Cm representing an image in anor-
malized two-dimensional Haar basis.

2. Sort the coefficientsin order of decreasing magnitude to produce
the sequence .y, - - - , Co(m)-

3. Starting with m = m, find the smalest m for which
S (Com)? < €2, wheree isthe allowable L? error.

The first step is accomplished by applying either of the two-
dimensional Haar wavelet transforms described in Section 3.1, be-
ing sure to use normalized basis functions. Any standard sorting
technique will work for the second step. However, for largeimages
sorting becomes exceedingly slow.

The pseudocode below outlines a more efficient method that uses
abinary search strategy to find a threshold below which coefficient
sizes are deemed negligible. The procedure takes as input a one-
dimensional array of coefficients C (with each coefficient corre-

sponding to a two-dimensional basis function) and an error toler-
ance e. For each guess at athreshold r, the algorithm computes the
square of the L2 error that would result from discarding coefficients
smaller in magnitude than . This squared error sis compared to e2

at each iteration to decide whether the binary search should continue
intheupper or lower half of thecurrent interval. Theagorithm halts
when thecurrent interval isso narrow that the number of coefficients

=
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Figure 8 Nonstandard construction of a two-dimensional Haar
wavelet basis for V2.

to be discarded no longer changes.

procedure Compress(C: array [1..m] of reals; e: real)
Tmin <— Min{ |C[i]| }
Tmax < Max { |C[i]| }
do
T 4 (Tmin + Tmax) /2
s« 0
fori < 1tomdo
if |C[i]| < 7 then s « s+ (C[i])?
end for
if s < € then Toin < 7 €S8 Tinay < 7
until Tmin A Tmax
for i + 1tomdo
if |C[i]] < 7 then C[i] +- 0
end for
end procedure

This binary search algorithm was used to produce the images in
Figure 9. These images demonstrate the high compression ratios
wavelets offer, as well as some of the artifacts they introduce.

DeVore et al. [6] suggest that the L' norm is best suited to the
task of image compression. Here is a pseudocode fragment for a
“greedy” L' compression scheme:

for each pixel (x,y) do
o[xy] + O
end for
fori «+ 1tomdo
0’ + & + error from discarding C[i]
if nyy [6[x V]| < €then
discard coefficient C[i]
§« &
end if
end for

Notethat this algorithm’s results depend on the order in which coef-
ficients are visited. Different images (and degrees of compression)
may be obtained from varying this orde—for example, by start-
ing with the finest scale coefficients, rather than the smallest coef-
ficients. You could also run a more sophisticated constrained op-
timi zation procedure to select the minimum number of coefficients
subject to the error bound.
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Figure9 L2 wavelet image compression: Theoriginal image (a) can be represented using (b) 19% of itswavelet coefficients, with 5% rel ative?
error; () 3% of its coefficients, with 10% relativel.? error; and (d) 1% of its coefficients, with 15% relativel? error.

4 Conclusion

We have described Haar wavel etsin one and two dimensions aswell
as how to use them for compressing functions and images. Part 2
of this primer will continue this exposition by presenting the math-
ematical framework of multiresolution analysis. We will also de-
velop aclass of wavel ets based on endpoint-interpol ating B-splines,
and describe how to use them for multiresolution curve and surface
editing.
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A Linear algebrareview

The mathematics of wavelets rely heavily on fundamental ideas
from linear algebra. This appendix reviews afew important ideas.

A.1 Vector spaces

The starting point for linear algebra s the notion of avector space
A vector space (over the reals) can be loosely defined as a collec-
tion V of elements where

1. ForalabelRandforaluveV,autbveV.
2. Thereexistsaunique element O € V such that

- foralueV,0u=0,and

-fordlue V,0+u=u.

3. Other axioms (omitted here) hold true, most of which are neces-
sary to guarantee that multiplication and addition behave as ex-
pected.

The elements of a vector space V are called vectors, and the e-
ement O is called the zero vector. The vectors may be geometric
vectors, or they may be functions, as is the case when discussing
wavelets and multiresolution analysis.

A.2 Basesand dimension

A collection of vectorsug, Uz, . .
linearly independent if

. inavector spaceV are said to be

Clh+CU+---=0 ifandonlyif c=c=---=0.
A collectionus, Uy, . .. € V of linearly independent vectorsisabasis

for V if every v € V can be written as
i

for some real numberscy, cy,.... The vectorsin abasis for V are
saidtospan V. Intuitively speaking, linear independence meansthat
the vectorsare not redundant, and abasis consists of aminimal com-
plete set of vectors.

If abasis for V has afinite number of elementsu,...,un, thenV
isfinite-dimensional and itsdimension ism. Otherwise, V is said to
be infinite-dimensional.

Example IR® is a three-dimensional space, and &, =
(14,0,0), & =(0,1,0), &3 = (0,0,1) isabasisfor it.

Example: The set of all functions continuous on [0, 1] is
an infinite-dimensiona vector space. WE'll call this space
Cl[0,1].

A.3 Inner productsand orthogonality

When dealing with geometric vectors from the vector space IR, the
“dot product” operation has anumber of uses. The generalization of
the dot product to arbitrary vector spacesiscalled aninner product.
Formally, aninner product (- | -) on avector spaceV isany map from
V x VtoIRthatis

1. symmetric: (u|v) = (v|u),

2. bilinear: (au+bv|w) =a(u|w) + b(v|w), and

3. positive definite: (u|u) > Oforall u# 0.

A vector space together with aninner product is called, not surpris-
ingly, aninner product space

Example: It isstraightforward to show that the dot product
on IR defined by

((a1, @2, a3) | (b1, b2, b)) := @by + @by +ashs (1)

sati sfies the requirements of an inner product.

Example:  The following “standard” inner product on
C[0, 1] plays acentral role in most formulations of multires-
olution analysis:

1
(flgy = / £(X) g(x) dx.
0

The standard inner product can also be generalized to include
apositive weight function w(x):

1
(flg) = / W0 £ g0 .
0

One of the most important uses of the inner product isto formalize
theideaof orthogonality. Two vectorsu, vin aninner product space
are said to be orthogonal if (u|v) = 0. Itis not difficult to show
that a collection ug, Uy, . . . of mutually orthogonal vectors must be
linearly independent, suggesting that orthogonality isastrong form
of linear independence. An orthogonal basisis one consisting of
mutually orthogonal vectors.

A.4 Normsand normalization

A normisafunction that measures the length of vectors. In afinite-
dimensional vector space, wetypically usethe norm||u||:=(u | u)*/2.
If we are working with afunction space such asC[0, 1], we ordinar-
ily use one of the L norms, defined as

1 1/p
lull, = ( / |u(x)|"dx)
0

In the limit as p tends to infinity, we get what is known as the max-
norm

Ul == max |u(X)|.
lulle = max Jueo)
Even morefrequently used istheL.? norm, which can also bewritten
as ||ull, = (u| u)*/? if we are using the standard inner product.

A vector u with |Ju|| = 1issaid to be normalized. If we have an

orthogonal basis composed of vectors that are normalized in thel2
norm, the basis is called orthonormal. Stated concisely, a basis
U1, Uz, . .. isorthonormal if

(ulu) = dy,

where §;; is called the Kronecker deltaand isdefined to be 1ifi =,
and 0 otherwise.

Example: Thevectorse; = (1,0,0), & = (0,1,0), &3 =
(0, 0, 1) form an orthonormal basisfor theinner product space
IR® endowed with the dot product of Equation (1).
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