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ABSTRACT AND INTRODUCTION 

A Color Space is a completely-specified scheme for describing the 
color of light, ordinarily using three numerical values (called 
coordinates). An important color space, defined by the International 
Commission on Illumination (CIE, the initials of its French name) is the 
CIE XYZ color space. It is widely used in scientific work, and color 
descriptions in other color spaces are often related to their 
representation in this space. A derivative of this color space, the CIE 
xyY color space, is often used as a way to graphically present the 
chromaticity of colors. 

The XYZ color space itself has a fascinating genesis. Its nature, 
history, and role in both theoretical and practical color science are 
described in this article, along with that of its cousin, the CIE xyY 
color space. 

The article begins with a review of several important technical 
concepts that are involved in the story. 

BACKGROUND 

Our work on this topic requires an accurate grasp of a number of 
fundamental matters in the area of colorimetry. Here I will review 
some of those topics and other critical matters. 

Color 

Color is a property that distinguishes among different kinds of light. It 
is defined wholly in terms of human perception. If two instances of 
light appear to a viewer to be the same color1, they are the same 
color. 

Color, as we use the term in the technical sense, is usually recognized 
by the viewer as having two aspects: 

                                      

1 I have to add, for rigor, “if observed under the same conditions”. The subtlety that 
this honors, the matter of chromatic adaptation, will not play a role in this article. 
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• Luminance, which we can think of for our purposes as an 

indication of the “brightness” of the light.2 

• Chromaticity, the property that distinguishes red from blue, and red 
from pink. (This is the property that lay people typically think is 
meant by “color”, but the technical concept of color embraces 
luminance as well.) 

What determines the color of light? 

Color is not a primary physical property like the temperature or 
pressure of a gas. We can, however, ascertain the color of an 
“instance” of light by physical measurements which will predict for us 
the eye’s response to it. 

The physical property of the light that gives it its color is its 
“spectrum”,3 the “plot” of distribution of the power in the light over 
the range of wavelengths that can affect the eye (the “visible 
wavelengths”). 

The “shape” of the plot determines the chromaticity of the light; its 
overall “vertical scale” determines its luminance. That is, if we have 
two different instances of light, whose spectrums have the same 
shape, but for one instance is proportionately “stretched” vertically, 
the two instances have the same chromaticity, but the second one 
has a greater luminance. 

In the other direction, things are not nearly so tidy. We can have 
several instances of light with different spectrums which nevertheless 
have the same color. In fact there are an infinity of spectrums that will 
have any given color. 

This situation is called metamerism, and different spectrums having 
the same color are called metamers of the color. 

Color spaces 

It has been long recognized that, as perceived by most human 
observers, any color of light can be specified by stating three 
numerical values. That is, color is three-dimensional in the 
mathematical (not geometric) sense. 

                                      

2 There is a subtle but important formal distinction between luminance and 
brightness, but for our purpose here we can ignore it. 

3 The formal name of this is the power spectral distribution (PSD) of the light. 
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There are, however, many different schemes of coordinates under 
which these three numerical values can be defined. These schemes, 
when fully specified as to their details, are called color spaces. 

There are several basic schemes, and for each, there are usually 
several different standard, fully-specified forms. 

One important scheme is the additive scheme. Additive color spaces 
work by stating the amounts of three kinds of light (called the 
primaries of the color space), having different, and precisely specified, 
chromaticities, which if actually added together would create light of 
the color being described. This can be thought of both as a recipe for 
actually creating light of that color (as in a display screen) and as an 
abstract way to describe that color. 

The three amount values are said to be the three coordinates (under 
the specific color space) of the color of interest. 

Tristimulus color spaces 

Additive-scheme color spaces can be called tristimulus color spaces, 
since they work by defining the amounts of three stimuli provided to 
the eye (the three primaries). However, it is a widespread custom to 
reserve the name “tristimulus color space” for a particular color space 
of this class, the CIE XYZ color space, the overall subject of this 
article. 

How the eye determines color 

It has been determined that (for fairly substantial luminance) the eye 
observes each tiny element of the image on the retina with three kinds 
of “cones”, which are “photodetectors” 4. Each kind has a different 
spectral response, by which we mean a curve that tells how much 
“output” the cone delivers from light of a fixed “potency” at each 
wavelength over the visible range. 

When an area on the retina is bathed in light with a certain spectrum, 
in effect, for each of the three kinds of cones: 

• The spectrum of the light is multiplied by the spectral response of 
the cone, meaning that, for each wavelength, the  
“potency” of the light at that wavelength is multiplied by the value 
of the spectral response at that wavelength. 

                                      

4 There are a few humans (“tetrachromats”), all women, who have four kinds of 
cones. Accordingly, their perception of color requires four values to describe. 
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• All these products are added together5, giving the output of the 

cone. 

The three types of cone are called “L”, “M”, and “S”, referring to the 
fact that the peaks of their spectral responses are at different 
wavelengths, which we arbitrarily consider to be “long”, “medium” 
and short. The spectral response curves of the three types of cone are 
called l, m, and s 6 (the usual typography is an overbar, but that is a 
pain to produce in this word processor, so I will underline them 
instead). 

We cannot actually determine these curves (formally described as 
response functions, since they are functions of wavelength). We can 
derive related curves by tedious visual experimentation (a process that 
will be discussed at length shortly), and from these indirectly come to 
conclusions as to the curves themselves. But different researchers 
have come to different conclusions. 

Figure 1 shows a popular conclusion as to these three response curves 
(scaled so that their peaks are all at 100 units). They are labeled here 
with the cone type names, L, M, and S, not the function names. 

 

Figure 1. Eye cone response curves 

THE COLOR MATCHING EXPERIMENTS 

We cannot directly determine the three response functions, l, m, and 
s, of the human eye, mainly because we can’t put a “meter” on the 
outputs of the cones. 

                                      

5 Since both the spectrum of the light and the spectral response function of the cone 
are continuous, the process is actually integration, not summation, but the concept 
is identical. 

6 The mathematician would write then as l(), m(), and s(), reminding us that all of 
them are functions of wavelength, . 
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But color scientists were able to precisely characterize the response of 
the human eye in a way that is almost as useful to us as knowledge of 
these curves. This was done by a tedious series of experiments with 
actual human observers, done in around 1931. The basic tests used a 
“tristimulus” concept with three actual primary light sources. A small 
screen was arranged so that one half was illuminated by light of a 
“test color”, while the other half was illuminated by light composed of 
adjustable amounts of the three primaries. The three primaries used 
had spectrums comprising only a single wavelength.7 For the basic 
tests, the “test color” was also light whose spectrum comprised only 
a single wavelength, which was changed from one observation to 
another. 

With a particular test light in place, the user was asked to adjust the 
amounts of the three primaries until there was an exact visual match 
at the boundary between the two halves of the screen. The amounts 
of the three primaries for which that occurred were recorded, and then 
another test light was put into place. 

In some case, it turned out that a negative amount of a certain 
primary was needed for a match., How could that be done? 

In such a case, that primary was added to the “test light” on the 
reference half of the screen, which was equivalent to a negative 
contribution of that primary to the “matching light”. 

Multiple runs were made with multiple observers, and a vast mass of 
data accumulated. 

Analysis of this data produced a consolidated model of the matching 
of light of known color by amounts of the three primary lights. 

This was presented in the form of three curves, one for each primary, 
which showed the amount of that primary needed in the “mix” to 
make light whose color was the same as that of “monochromatic” test 
light of a certain wavelength, as a function of that wavelength. These 
were called the “color matching functions”, designated r, g, and b. 
They are seen in figure 2.  

                                      

7 These are described as spectral chromaticities, since when we decompose light by 
wavelength, as with a prism or diffraction grating, the entire display is spoken of as 
“the spectrum” (one of several uses of that term), and the light at any point along it 
only comprises one wavelength. Such chromaticities are also often called 
monochromatic, meaning “one color”. That term is really a misnomer; any instance 
of light has only “one color” (as we today understand the term). Still, I will use that 
term, since it is so commonly understood in technical writing. 
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They are not the eye cone response functions, l, m, and s. But there is 
a mathematical relationship between any such set of matching 
functions and the eye cone response curves, which we can exploit in 
many beneficial ways. 

 
Figure 2. CIE RGB color matching functions 

The three primaries chosen for test program had spectrums which (as 
we had previously noted) comprised only a single wavelength. Those 
wavelengths were 700 nm, 546.1 nm, and 435.8 nm. The latter two 
were chosen since they could be generated accurately by emissions 
from a mercury-arc lamp. The first one could not be (at the time) 
generated directly in any such precise way, but was chosen because 
the response of the eye in that spectral region made it not so critical 
that this primary be generated precisely. 

The hues of these three primaries could be described as “red”, 
“green”, and “blue”, respectively. Of course those terms do not 
correspond to any specific hue—they are just quantitative 
generalizations. 

Because this test protocol worked on the basis of the addition of light 
from three primaries, it actually defined a bona fide additive color 
space. That is, we can describe any color (not just the “spectral” 
colors used in the basic test runs) in terms of the amounts of the three 
primaries needed to produce light of the same color. Because of the 
“popular” names of its three primaries, this was said to be the CIE 
RGB color space. 

MOVING ON  

A disadvantage of this characterization of human color response is 
that the “red” matching function has negative values in part of the 
wavelength range. In fact, it can be demonstrated that, for a “color 
space” with “real” primaries (that is, ones we can actually generate, 
and see), at least one of the curves must have negative portions. 
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Analytical work done with the curves involves multiplications of light 
spectrum values by the curve values at different wavelengths, 
something that is today done easily by a computer, but which, done 
with desktop calculators and paper, was very tedious. There was 
concern that the need to keep track of both positive and negative 
values could increase the risk of a mis-step. 

Thus the workers decided there was need to develop another color 
space whose underlying matching functions were “nowhere negative”. 

This did not call for another round of zillions of human observations. 
We can take a description of a color in terms of values of the three 
coordinates of one color space and convert it into values of the three 
coordinates of another color space—coordinates that revolve around a 
different set of primaries (assuming that both color spaces are of the 
additive genre and thus both have primaries). 

And then we can, by another mathematical manipulation, determine 
what the corresponding set of matching functions would be for the 
“new” color space. 

Now, there are an infinity of color spaces all of whose matching 
curves would be nowhere negative. So the wonks decided, while they 
were at it, to pick one of those that had some other useful property. 

The process of transforming coordinate values in one color space (one 
set of primaries) to corresponding values in another color space 
(another set of primaries) turns out to involve three linear equations. 
We will show an example here. In it, the primaries of the “first” color 
space are called R, G, and B (fits what we are doing here), and the 
corresponding coordinate values are called R, G, and B89. I will call the 
primaries of the “second” color space X, Y, and Z (as in a typical 
algebra lecture), with the corresponding coordinate values called X, Y, 
and Z. 

Here are the transforming equations: 

BGRX 131211 mmm   (1) 

BGRY 232221 mmm   (2) 

                                      

8 This is consistent with the mathematical typographic practice of using italic letters 
to represent variables, which these are. 

9 Note that these are “linear” indications of the amount of the primary, not the 
nonlinear forms, also called R, G, and B (but no italics), in the actual “output” of 
such color spaces as sRGB. 
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BGRZ 333231 mmm   (3) 

where the nine coefficients (constants), m, define the transformation. 
Their values depend on the chromaticities of the primaries of the 
“RGB” and “XYZ” color spaces. 

This can be written in matrix form, thus: 


















































B

G

R

Z

Y

X

333231

232221

131211

mmm

mmm

mmm

 (4) 

or, more symbolically, as: 
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where [M] represents the entire transform matrix. 

Now before I proceed, let me reveal that X, Y, and Z (and X, Y, and Z) 
are not just illustrative names I used to illustrate the math as we do in 
algebra class. They will be the actual names used for the primaries 
(and coordinates) of this “new” color space, which will thus be called 
the “CIE XYZ” color space. (Thus life imitates lecture.) 

Back to the story, realizing that we are free to choose from among 
many new color spaces in our quest for one with “everywhere 
non-negative” matching functions, we realize that for any one we 
choose, there will be a certain set of the nine values, m11-m13, that 
make up the transformation matrix to this space from the CIE RGB 
space. 

And we have a lot of flexibility in doing that. 

Now, it turns out that the luminance (L) of a color we have 
represented by its coordinates in an additive color space (whose 
coordinates happen to be called R, G, and B, just to help the story 
move along) is given by: 

BGRL GGR kkk   (6) 

If we choose a “new” color space such that: 

Rkm21  , Gkm22  , and B23 km   (7) 

then L will always be equal to Y. 
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That is, the value of the coordinate of the Y primary in our new color 
space will always be the luminance of the color! 

And in fact, that is why, in the field of colorimetry, the symbol for 
luminance is not the normal scientific symbol, L, but rather is Y.10 

It may seem strange, then, that the primaries Y and Z do not 
contribute to the luminance of the color. How can that be? Can they 
be luminously-impotent? Yes. What kind of light could that be? Well, 
an imaginary kind, for one thing. 

Remember that this entire XYZ story is a mathematical fiction, and 
these primaries, like superheroes in comic books, can have any 
properties the wonks wanted to give them, so long as the math works 
out properly in connecting the story to the real world. 

In any case, by a process that involves this clever strategy regarding 
Y, and various other considerations, the wonks agreed on a set of 
primaries for this new color space (yes, its is our hero, the “CIE XYZ” 
color space). That directly (albeit by way of tedious mathematical 
manipulation) implied a corresponding set of matching functions. 

Figure 3 shows these matching functions (labeled just X, Y, and Z): 

 
Figure 3. CIE XYZ color matching functions 

I can’t “show” you right now what the primaries are, because: 

• I would show it on the CIE x-y chromaticity diagram, which won’t 
be invented for another page or so. 

• They are “imaginary”; they can’t actually be generated, and if they 
could be, we couldn’t see them. (More about this later.) This is an 

                                      

10 Students of this often say, “How sad that the wonks chose the same symbol, Y, 
for two different things: luminance, and the coordinate Y. This is very confusing.” 
But, by definition, they are the same thing. 
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unavoidable corollary of the fact that the three response functions 
are nowhere negative (which is how we got here anyway). 

We’ll “see them” in a little while. 

A, or maybe, “the”, tristimulus color space 

As noted earlier, any color space that revolves around the premise of 
representing a color in terms of amounts of three primaries—three 
stimuli—fed to the eye as one way to create the sensation of a certain 
color can be properly called a tristimulus color space, and this is true 
of the CIE XYZ color space. 

But, by historical custom (traceable back to the time of the work 
leading to this color space), the term “tristimulus color space”, 
without further elaboration, implies the CIE XYZ color space. 

This is ironic, because in this color space, the three “stimuli” (its 
primaries) cannot really be emitted, and so in fact cannot be used as 
actual stimuli to the eye! 

A COUSIN COLOR SPACE 

The CIE XYZ color space is an additive color space: as we have seen, 
it revolves around the concept of describing a color by stating the 
amounts of three primaries that would be combined to make light of 
that color. (Can we make visible light, with a real color, by mixing 
together “imaginary” primaries? In the laboratory, no. On paper, 
mathematically, yes. We’ll see how a little later.) 

Another important genre of color space is the luminance-chrominance 
color space genre. These relate more directly to the human outlook on 
color than the additive spaces. In a luminance-chromaticity color 
space, one coordinate tells us the luminance of the color, while the 
other two, together, tell us the chromaticity (and there can be several 
ways this can be organized). 

To allow the benefits of this in our scientific work, the wonks devised 
a luminance-chromaticity color space based on the CIE XYZ color 
space. Its chromaticity coordinates are called x and y. They are 
defined this way: 

ZYX

X
x


  (8) 

ZYX

Y
y


  (9) 
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Recall that Y, the coordinate of the Y primary, is in fact the luminance 
of the color, so we use Y (as is) as the luminance coordinate of this 
new color space. 

It is called the CIE xyY color space. 

The CIE x-y chromaticity diagram 

Since the coordinates x and y tell us the chromaticity of a color, we 
can use a chart with x and y as its axes to plot points that indicate 
chromaticity, usually called the CIE x-y chromaticity diagram. We see 
it in figure 4. 
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Figure 4. The CIE x-y chromaticity diagram 

Any chromaticity corresponds to a point on this diagram. The 
“horseshoe” curve consists of the chromaticity points of every color of 
light whose spectrum consists of only a single wavelength. These are 
the “spectral” chromaticities of which we spoke earlier.  

The dotted line at the bottom completes the region “enclosed” by the 
horseshoe. The chromaticities along it are not “spectral” (there is no 
light with only a single wavelength component that exhibits a color 
with such a chromaticity). They are called the nonspectral purples.  

All colors of visible light have chromaticities represented by points 
inside the region bounded by the horseshoe (and the locus of 
nonspectral purples). 
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Figure 5. The CIE primaries X, Y, and Z 

The imaginary primaries, X, Y, and Z 

Figure 5 shows, on the x-y chromaticity diagram, the chromaticity of 
the three imaginary primaries of the CIE XYZ color space, X, Y, and Z. 

Let me mention that when we speak of the “chromaticity” of these 
imaginary primaries, we are taking “poetic license”. Chromaticity is a 
property of color, and color only exists for light that can be seen by 
the eye. So these primaries don’t really have a chromaticity. But the 
poetic license here is fully excusable. Avoiding it would require some 
very cumbersome alternative terminology. 

Even though the X, Y, and Z primaries are imaginary, they can 
participate in the mathematical model by which two or three primaries, 
added together, can define a color. With regard to the chromaticity of 
that color, we can see how this works by geometric construction. We 
often do this for color spaces with real primaries, or even for real 
colors that are not primaries, but it works just fine with these 
imaginary ones. 

We’ll begin a demonstration on figure 6. 

Before we get going, I’ll use this figure to illustrate an important point. 
The chromaticity gamut of the xyY color space (and thus of its parent, 
the XYZ color space)— the range of chromaticities it can represent—is 
contained within the triangle X-Y-Z. You will note that this embraces 
the entire chromaticity gamut of visible light (but just barely—the 
wonks made it come out that way). 
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Figure 6.  Addition of X and Y primaries 

We start with a geometric construction to find the chromaticity of the 
color that would be produced by adding equal amounts of primary X 
and primary Y if we could actually do that. That chromaticity will lie 
on the line joining the points representing those primaries, and (since 
we postulated equal quantities of both) at a point equidistant from 
both—at the center of the line. The point representing the chromaticity 
of the compound light is labeled “X+Y” on the figure. Note that it is 
outside of the visual gamut (although just a bit). So we have made 
another imaginary “color”. Oh, great! 
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Figure 7. Adding in primary Z. 

In figure 7, we take the next step, adding in that same amount of 
primary Z to our intermediate product, color “Z+Y”. The final result 
will lie on the line joining those two chromaticities (as always when 
we add light of two different colors). 

Since there is twice as much “stuff” in color “X+Y” (one ration each 
of primaries X and Y) as in one ration of Z, the result will be only half 



The CIE XYZ and xyY Color Spaces Page 14 

 
the distance from “X+Y as it is from Z (2/3 of the distance along the 
line from Z to “X+Y”. 

We see that chromaticity point labeled “(X+Y)+Z” (to recognize the 
procedure we used to find it), but of course it is also “X+Y+Z”. And 
it is not imaginary—it lies well inside the visible light region. Reality at 
last! 

Thus, even though primaries X, Y, and Z have no physical reality, they 
participate just fine in the mathematics by which a set of X, Y, and Z 
values define a color. They have performed this useful service for us 
for (as of this writing) almost 80 years. The more spiritual among us 
may be gratified by this technical example of “faith in things unseen” 
(and unseeable). 

The white point 

The resulting point in our exercise, labeled X+Y+Z, is in fact the 
white point of this color space. The white point is defined as the 
chromaticity of the color indicated when the three coordinates of an 
additive color space (X, Y, and Z in this case) have equal values. On 
the x-y chromaticity diagram, the chromaticity coordinates of the XYZ 
white point are x=1/3, y=1/3. 

Is that actually “white”? Well, there is no chromaticity that uniquely 
qualifies to be called “white”. There are a number of standard 
illuminants, with specified chromaticities (in fact, specified spectrums) 
that can be thought of as “specific kinds of white”. The white point of 
the XYZ color space is exactly the chromaticity of one of those, 
illuminant E. Its specified spectrum is entirely flat—equal power in any 
wavelength increment of a given size. The “E” is evocative of “equal 
energy”, a traditional way to describe that spectrum (although of 
course it is power, not energy, that is at issue). 

Its chromaticity is very nearly that of another standard illuminant, 
D55, which is representative (in actual spectrum as well as 
chromaticity) of “mid-morning/mid-afternoon daylight”. 

USAGE OF THE CIE XYZ COLOR SPACE 

General scientific work 

The CIE XYZ color space (or its cousin, the CIE xyY color space) is the 
most common way in technical colorimetric work to describe the color 
of light. For example, in the specifications for other additive color 
spaces (such as sRGB), the chromaticities of the standard primaries 
are defined in terms of their x and y coordinates. 
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When equations are given to allow the description of a color to be 
transformed from expression under one color space into expression 
under a different color space, most commonly the transform is given 
in two steps, first a transform from the “source” color space to the 
CIE XYZ color space, and then a transform from the CIE XYZ color 
space to the “destination” color space. 

ICC Color profiles 

In the careful management of color representations in photographic 
imagining, color profiles are used to characterize the actual (often 
locally- and currently-measured) responses of such things as image 
scanner chains, computer display chains, or printing chains11. In fact, 
these profiles define a “parochial” color space for the device, since 
what interests us is (in the case of a printer chain) what numerical 
values to present to the printer to make it print a certain color—the 
ultimate significance of a color space. 

In software that deals with this matter (such as image editing 
software, image “viewing” software, and certain browser software), 
the image is essentially transformed from representation under the 
color space associated with the arriving image data (perhaps sRGB, as 
is normally used in a JPEG image file) into the “parochial” actual color 
space of, for example, the display chain or printer chain being used at 
the moment. 

These profiles are stored in files in a format defined by the 
International Color Consortium, and are called “ICC color profiles”. 
These (usually) define the color space of interest (standard or 
parochial) in terms of transforms to and from the CIE XYZ color space. 

At least conceptually, the process works this way. Suppose we will be 
starting with the image represented in the sRGB color space (which 
has its own profile; remember, a profile is really a very detailed 
description of a color space) and we must transform it to 
representation in the actual color space of the printer chain leading to 
a certain photo printer. 

For each pixel of the image, the software, guided by the ICC profile 
for the sRGB color space, transforms its sRGB coordinates into XYZ 
coordinates under the CIE XYZ color space. Then, immediately, guided 
by the ICC profile for the printer chain, these coordinates are 

                                      

11 The term “printer chain” (for example) is used to make clear that the properties of 
interest are not just those of the printer itself but also come from the color-handling 
behavior of the printer driver software. 
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transformed into coordinates of the printer chain color space (which 
will probably be in the format of coordinates of the sRGB color space). 

In actual practice, the software, which will need to do this for millions 
of pixels per image, probably for several images in this session, may 
combine the “sRGB to XYZ” transform (defined by the ICC sRGB 
profile) with the “XYZ to printer” transform (defined by the ICC profile 
for the printer in use) into a single transform, which it will then use to 
transform each pixel of each image in one operation. 

The “intermediate” color space (CIE XYZ in most, but not all, 
situations) is functionally called the “profile connection space” (PCS). 

FOR MORE INFORMATION 

More detailed information on this topic, on some of the collateral 
matters discussed above, and on several related issues will be found in 
the article, “Digital Camera Sensor Colorimetry”, by this same author, 
probably available where you got this article. 

# 


