GRAPHICS
HARDWARE

Niels Joubert, 4th August 2010, CS147

Thursday, August 5, 2010

Enabling Real Time Graphics

Rendering Pipeline
History
Latest Architecture

GPGPU Programming

Thursday, August 5, 2010

RENDERING
PIPELINE

Vertices are transformed into “screen space”

vd

Vertices

Thursday, August 5, 2010

Rendering Pipeline

Vertex Processing

Vertices are transformed into “screen space”

Each vertex is

. .. transformed
. # Nependently!
VN

Thursday, August 5, 2010

Vertices are organized into primitives

Primitives are clipped and culled

v2

Vertices Primitives
(triangles)

Thursday, August 5, 2010

Rasterization

Primitives are rasterized into pixel fragments.

Fragments

Thursday, August 5, 2010

Rasterization

Each primitive is
rasterized
independently!

Primitives are rasterized into pixel fragments.

Fragments

Thursday, August 5, 2010

Fragment Processing

Fragments are shaded to compute a color at a pixel

mu

Shaded fragments

Thursday, August 5, 2010

: Each f ti
Fragment Processing shaded

independently!
Fragments are shaded to compute a color at a pixel

mu

Shaded fragments

Thursday, August 5, 2010

Fragments are blended into the framebuffer

Z-Buffer determines
visibility

Pixels

Thursday, August 5, 2010

Memory location with aggregation ability
Many fragments end up on same pixel
All fragments are handled independently
Conflicts when writing to framebuffer?

Revisit this later! [Synchronization / Atomics]

Thursday, August 5, 2010

Pipeline Entities

e v4

Vertices

Fragments (shaded)

Pixels

dicsch

Fragments

Thursday, August 5, 2010

Rendering Pipeline

Graphics Pipeline

Vertex Buffers

Transformations

Vertex Shader

Polygon Data

Geometry Shader

Fragment shader

Producer-Consumer

Thursday, August 5, 2010

HISTORY

How we got to where we are

Thursday, August 5, 2010

The first GUI.

Thursday, August 5, 2010

1972:

Mouse, Keyboard,
Files, Folders,
Draggable windows

“Personal Computer”

Thursday, August 5, 2010

Apple |

Launched 1977
- 1Mhz 6502 processor

- 4KB RAM (expandable to
48KB for $1340)

- “Graphics for the Masses”

Did it have a “graphics card™?

Thursday, August 5, 2010

Apple |

CPU:
- Writes “pixel” data to RAM

Video Hardware:

- Reads RAM in scanlines,
generates NTSC

No, there is no graphics card.

Thursday, August 5, 2010

A VLS| Geometry System for Graphics

“The Geometry System is a ...
computing system for
computer graphics
constructed from a basic
building block, the Geometry
Engine.

Control Store

(40 K bits equivalent)

James H. Clark, Computer Systems Lab, Stanford University & Silicon Graphics, Inc.

PC/Stack

Thursday, August 5, 2010

AVLSI| Geometry System for Graphics
James H. Clark, Computer Systems Lab, Stanford University & Silicon Graphics, Inc.

Ciock PADS PC/Stack

[

Matrir Engines

: Control Store
- . | i
(40 K bits equivalent)
*———\
P P
L) A Exponent A
T
D D
Scaler Engines Chpper Engines
S
: 1 ' A 5 Exponent Mantissa =
170 Reqisters
<« .
Mantissa

5 Million FLOPS

PADS

Thursday, August 5, 2010

AVLSI| Geometry System for Graphics
James H. Clark, Computer Systems Lab, Stanford University & Silicon Graphics, Inc.

Matri¥ Engines
1

|)
L)

Scaler Engines Chpper Engines
1)|

3D)) L

Thursday, August 5, 2010

Instruction Set:

O Move - Move the Current Point to the position
specified by the floating-point vector that follows.

© Movel - Same as Move, but integer data is supplied.

O Draw - Draw from the Current Point to the position
specified by the following data. Update the Current
Point with this value after drawing the line segment.

O Drawl - Same¢ as Draw, except that integer data is
supplied.

© Point and Pointl - Cause a dot to appear at the point
specified in the following data. Update the Current
Point with this value after drawing the point.

O Curve - Iterate the forward differences of the matrix
on the top of the matrix stack; issue from the Matrix
Subsystem to the Clipping Subsystem a Draw
command followed by the computed coordinates of
the point on the curve. The Current Point is updated
just as with the Draw command. This command
should nor be followed by data as with the other
drawing commands.

O MovePoly and MovePolyl - In Polygon mode, move

the Current Point 0 the position supplied by the
following data. This command must be used rather
than Move if a closed polygon is to be drawn.

O DrawPoly and DrawPolyl - In polygon mode, same as
Draw command.

O ClosePoly - Close the currently open polygon,
flushing the polygon from the clipping subsystem.

Thursday, August 5, 2010

History: 1982

engine.

Raster

System

IRIS - Integrated Raster Imaging System

Silicon Graphics Inc’s first real-time 3D rendering

Geometry
System

EtherNet

Thursday, August 5, 2010

Thursday, August 5, 2010

BLock Image Transfer
- Co-processor / logic block

- Rapid movement and modification of memory
blocks

- Commodore Amiga had a complete blitter in
hardware, in a separate “graphics processor”

Thursday, August 5, 2010

History: 1993

Silicon Graphics RealityEngine

“Its target capability is the rendering of lighted, smooth shaded, depth buffered,
texture mapped, antialiased triangles.” - RealityEngine Graphics, K. Akeley, 1993

System Bus -

Command
Processor

Geometry
Engines

Triangle Bus —*

Fragment
Generators

Image
Engines

display generator board

Thursday, August 5, 2010

Silicon Graphics
- Proprietary IRIS GL API (state of the art)
+ OpenGL as open standard derived from IRIS

- Standardised HW access, device drivers
becomes important

- HUGE success:

OpenGL allows HW to evolve, SW to decouple

Thursday, August 5, 2010

History: 1998

NVidia RIVA TNT

- oo Ganersin_|
- Vet Procesng_|

History: 2002

Direct3D 9, OpenGL 2.0

GPU

ATl Radeon 9700

History: 2006

“Unified Shading” GPUs

GeForce G80

GRAPHICS
ARCHITECTU RE

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Single stream of instructions REALLY FAST
- Long, deep pipelines
- Branch Prediction & Speculative Execution
- Hierarchy of Caches

- Instruction Level Parallelism (ILP)

Thursday, August 5, 2010

Architecture

G5 (2003)

- - e -
el 7 0. N a2 .
. . .
.- ‘ . . -
Ce [y - =» 9 .
- S T s - - -

Thursday, August 5, 2010

- 2 Ghz

-1 Ghz FSB

- 4GB RAM

- 2 FPUs

- 50 million transistors
- 215 Inst. pipeline

- Branch Prediction

Thursday, August 5, 2010

- 2 Ghz - 1.4 Ghz

-1 Ghz FSB - 1.8 Ghz FSB
- 4GB RAM - 4GB RAM (1.5 in GTX)
- 2 FPUs

- 50 million transistors
- 215 Inst. pipeline

- Branch Prediction

Thursday, August 5, 2010

- 2 Ghz - 1.4 Ghz

-1 Ghz FSB - 1.8 Ghz FSB

- 4GB RAM - 4GB RAM (1.5 in GTX)
- 2 FPUs + 960 FPUs

- 50 million transistors - 3 billion transistors

- 215 Inst. pipeline

- Branch Prediction - No Branch Prediction

Thursday, August 5, 2010

“The number of transistors on an integrated
circuit doubles every two years”

- Gorden E. Moore

Thursday, August 5, 2010

“The number of transistors on an integrated
circuit doubles every two years”

- Gorden E. Moore

What Matters: How we use these transistors

Thursday, August 5, 2010

Performance

Thursday, August 5, 2010

- Cannot continue to scale Mhz

There is no 10 Ghz chip

- Cannot increase power consumption per area

We’re melting chips

continue to Increase transistor count

Thursday, August 5, 2010

Using Transistors

- Instruction-level parallelism

out-of-order execution, speculation, branch prediction

- Data-level parallelism

vector units, SIMD execution

SSE, AVX, Cell SPE, Clearspeed

- Thread-level parallelism

multithreading, multicore, manycore

Thursday, August 5, 2010

7
(o B
®
-
LL
O

0 +

Computation Power of Graphic Processing Units

-+NVIDIA GPU
—+|ntel CPU

3GHz Xeon
3GHz Quad

Core2 Duo

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008

Westmere

712712009

Thursday, August 5, 2010

Memory Throughput of Graphic Processing Units

-=NVIDIA GPU
-—|ntel CPU

3GHz Xeon

3GHz Quad
3GHz Dual Core2 Duo

Core P4

Westmere

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008 712712009

Thursday, August 5, 2010

How can this be?

- Remove transistors dedicated to speed of a
single stream of instructions

* out-of-order execution, speculation, caches, branch prediction

« CPU: minimize latency of an individual thread

- More memory bandwidth, more compute

* Nothing else on the card! “Simple” design

« GPU: maximize throughput of all threads.

Thursday, August 5, 2010

@ SIGGRAPHZ00°

From Shader Code to a Teraﬂop:
How Shader Cores Work

Kayvon Fatahalian
Stanford University

Thursday, August 5, 2010

What's in a GPU?

Input Assembly

Rasterizer

Output Blend

Video Decode

Shader Shader Tex
Core Core

Shader Shader T
Core Core ex

Shader Shader T
Core Core ex

Shader Shader T
Core Core ex

Work
Distributor

Thursday, August 5, 2010

HW
or
SW?

Heterogeneous chip multi-processor (highly tuned for graphics)

A diffuse reflectance shader

Thursday, August 5, 2010

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)

{
float3 kd;

kd = myTex.Sample(mySamp, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
return float4(kd, 1.0);

Independent, but no explicit parallelism

Compile shader

sampler mySamp;

1 unshaded fragment input record CJ

Texture2D<float3> myTex;

float3 lightDir;

!

<diffuseShader>:

sample ro, v4, tO, so
r3, vo, cbo[0]

mul
float4 diffuseShader(float3 norm, float2 uv) madd
madd
:)
clmp
float3 kd;
mul
kd = myTex.Sample(mySamp, uv); mul
kd *= clamp (dot(lightDir, norm), 0.0, 1.0); mul
return float4(kd, 1.0); mov
}

Thursday, August 5, 2010

r3,
r3,
r3,
00,
ol,
02,

o3,

vl,
V2,
r3,
ro,
ri,

r2,

1(1.

cbo[1], r3
cbo[2], r3
1(0.0), 1(1.9)
r3

r3

r3

0)

!

1 shaded fragment output record O

Execute shader

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

_J
!

<diffuseShader>:

sample ro, v4, to, so
r3, vo, cbo[o]

madd r3,
madd r3,

mul

clmp r3,

mul
mul
mul

mov

00,
02,

03,

vl,
v2,
r3,
ro,
ri,

r2,

1(1.

cbo[1], r3
cbo[2], r3
1(0.0), 1(1.9)
r3

r3

r3

0)

!

CPU-“style” cores

Data cache
(A big one)

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

13

Slimming down

ALU

(Execute)

ldea #1:

Remove components that
help a single instruction
stream run fast

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

14

Two cores (two fragments in parallel)

fragment 1

_J
!

ALU

(Execute)

ALU

(Execute)

==

==

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

fragment 2

_
!

15

Four cores (four fragments in parallel)

ALU
(Execute)

ALU
(Execute)

ALU
(Execute)

o]
_ewn |
o]
e

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

ALU
(Execute)

s |
|
o]
e

16

Sixteen cores

AL

c

AL

c

(sixteen fragments in parallel)

>

L

c

>

L

c

AL AL

L

L

e ARG
R ARG

ALU ALU

R ARG

ALU

0 L0 e

ALU

AL AL

e «J | Be « Qe «J | B «J
Be «J | B <« e «J | Be «J
e « | B <« Be « | Be e«
Be e« | e <« Be e« | Be <«

L8 2
L8 2

L

L8

L

L8 2

16 cores = 16 simultaneous instruction streams

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

17

Instruction stream sharing

Thursday, August 5, 2010

O O O O
2 2 3
3 4 3 3
O @ O
O O O O
3 2 3 2
3 4 3 3
O O @&
O O O O
2 2 3 3
3 3 3 3
O @ @8 O
O O O O
4 4 4 4
L4 L4 3 14
O & O @&

But... many fragments should
be able to share an instruction

stream!

<diffuseShader>:

sample ro, v4, to, sO

mul r3,
madd r3,
madd r3,
clmp r3,
mul 00,
mul o1,
mul o2,

mov 03,

vo,
vl,
v2,
r3,
ro,
ri,
r2,

cbo[0]

cbo[1], r3
cbo[2], r3
1(e0.9), 1(1.0)
r3

r3

r3

1(1.0)

Recall: simple processing core

ALU

(Execute)

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

Add ALUs

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU2| | ALU3 | [ALU4

ALUS5 | | ALU6| | ALU7 | | ALUSB

axfenfiealled gIMD processing

Shared Ctx Data

Modifying the shader

- <diffuseShader>:

sample ro, v4, to, so
ALU1 ALU 2 ALU 3 ALU 4 mul r3, vo, cbo[0]
madd r3, vl, cbo[1l], r3
, r3
ALUS| | ALU6| | ALUZ| | ALUS madd r3, v2, cbo[2], r
clmp r3, r3, 1(0.0), 1(1.0)

mul 00, roe, r3

mul o1, rl, r3
mul o2, r2, r3

mov o3, 1(1.0)

ﬂ ﬂ m ﬂ Original compiled shader:
Shared Ctx Data Processes one fragment

using scalar ops on scalar
registers

Thursday, August 5, 2010

Modifying the shader

Thursday, August 5, 2010

ALU1 ALU2 | | ALU3 | | ALU4

ALUS5 | | ALU6| | ALU7 | | ALUS

Shared Ctx Data

<VEC8_diffuseShader>:

VEC8_sample vec_ro, vec_v4, tO, vec_so

VEC8_mul
VEC8_madd
VEC8_madd
VEC8_clmp
VEC8_mul
VEC8_mul
VEC8_mul
VEC8_mov

vec_r3,
vec_r3,
vec_r3,
vec_r3,
vec_o9,
vec_ol,
vec_o2,

vec_o3,

vec_veo,
vec_vl,
vec_v2,
vec_r3,
vec_ro,
vec_ril,
vec_r2,

1(1.0)

cbo[0]
cbo[1], vec_r3
cbo[2], vec_r3
1(0.0), 1(1.0)
vec_r3
vec_r3

vec_r3

New compiled shader:

Processes 8 fragments
using vector ops on vector

registers

Modifying the shader

I
HEHHGE
|

<VEC8_diffuseShader>:

VEC8_sample vec_ro, vec_v4, to, vec_sO
VEC8 _mul vec_r3, vec_vO, cbo[0]

ALU1| ALU 2
VEC8_madd vec_r3, vec_vil, cbo[1], vec_r3

ALU3| ALU 4

VEC8_madd vec_r3, vec_v2, cbo[2], vec_r3
VEC8_clmp vec_r3, vec_r3, 1(0.0), 1(1.0)

ALUS5 | | ALU6 | | ALU7 | | ALUS

VEC8_mul
VEC8_mul
VEC8_mul

vec_o0,
vec_ol,

vec_o2,

vec_ro,
vec_rl,

vec_r2,

vec_r3
vec_r3

vec_r3

H ﬂ m m VEC8_mov vec_o3, 1(1.0)

Coxf] cex] cexf] cex !

oene
1 1

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/ 23

Thursday, August 5, 2010

128 fragments in paraliel

9008 8898 d333 3838 I || I ||

. . 5 3 Ooo0 | Oooo | | oooo || oooo
N N o

3 s s s E]E[HEi EHE]EEi E}E{HEi EHE]EEi

OE00 0S8 0888 0800

G880 0800 0080 0880

[1 1] 1 1

90900 ddod ©9608 9338 oooo || oooo | |oooo || oooo
5 . 5 5 OO0 | o000 | | 0000 || 0000
3 s s s FHEIHEi EHEIHEi FHEIHEi EHEIHEi

CS00 0S8 0888 0800

@880 0880 0080 0880

0000 0000 0000 0000 1] 1] 1] 1]

0000 0000 0000 0000 oo | loooo | | oooo | ooos
3 3 3 ! OO | | OCCd OO || OCCd
3 s s s FHEIHEi EJEE]E' lHEIHEi EHEIHEi

OS00 0S8 0888 0800

@880 0800 0080 0880

0000 0000 0000 0O00

0000 ©088 ©oo8 o0do o o o
3 3 3 3
3 s s s I I I I I I I I

OS00 0S8 0888 0800

@880 0880 0080 0880

16 cores =128 ALUs
= 16 simultaneous instruction streams

Thursday, August 5, 2010

128 [

vertices / fragments
primitives
CUDA threads
OpenCL work items
compute shader threads

0000 0000 DANN DANN
0000 0000 DANN DANN
$ 4 4
3 3 3 primitives
ettt Oeee
8eet oeee
0000
0000 EEEE
3 ! |
3 : vertices
m[=]w]m NN
2080 DADMD
ecoe TYY eooe 0000
eooe ecoe ecee 0000
4 $
fragments
$ $
XXX oo
eocee oo
0000
0000
$
$ 4 4 4
Ot OoeE OCeese oeoo
880 OCoeE O0oe0 oeeeo

Thursday, August 5, 2010

] in parallel

ey Sy
O0O0O0 | 0000 | | 0000 || 000
Coog || O000| |000d || 0o0d
Iy Sy
OO0O0 | 000D | | 0000 || 000
Coog || O000| |000d || 000d
Sy Sy
OO0O0 | D000 | | 0000 || oo0od
o o o o o o
Ny Sy
OO00 | 000D | | 00o0d || Oood
COo0g || O000| |000d || 0o0d

E
E:
E

What is the problem?

<unconditional
shader code>

if (x > 0) {
y = pow(x, exp);
y *= Ks;
refl = y + Ka;
} else
X = 0;
refl = Ka;
}

<resume unconditional
shader code>

Thursday, August 5, 2010

But what about branches?
. DEOHZO0O0OE®

(clocks) ALU1 ALU2 ALUS8

<unconditional
shader code>

if (x> 0) (

y = pow(Xx, exp);

y *= Ks;

refl = y + Ka;
} else {

X = 0;

refl = Ka;
}

<resume unconditional
shader code>

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/ 27

Thursday, August 5, 2010

But what about branches?

Time
(clocks)

DHEO00OOE

ALU1 ALU2 ALUS8

Not all ALUs do useful work!
Worst case: 1/8 performance

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Thursday, August 5, 2010

<unconditional
shader code>

if (x > 9) {

refl = Ka; '

<resume unconditional
shader code>

28

No time now - See the “Beyond Programmable Shading” Siggraph talk

Think of a GPU as a multi-core processor optimized
for maximum throughput: Many SIMD cores working
together.

Thursday, August 5, 2010

Thousands on independent pieces of work

» Uses many ALUs on many cores

Amenable to instruction stream sharing

« Uses SIMD instructions

Compute-heavy:

* |lots of math for each memory access

Thursday, August 5, 2010

GF100 Architecture

30 SM’s on GTX480
Resources:
-2 X 16 “Cores”
CUDA Core
- 16 Load/Store units -

- 4 Special Functions

Sin/Cos/Sqrt

- 16 Double Precision units

1.44 Terra FLOPS

Fermi Streaming Multiprocessor (SM)

Thursday, August 5, 2010

GF100 Architecture

Mental Model:

“On every clock cycle, you can
assign an instruction to two of
these resources”

CUDA Core

Dispalch Port

Resources:
e 2x 16 “Cores”
* 16 Load/Store units
* 4 Special Functions

e 16 Double Precision units

Fermi Streaming Multiprocessor (SM)

Thursday, August 5, 2010

GPGPU

General Purpose Computing on GPUs

Thursday, August 5, 2010

C/C++ extended with:
- Kernels - function executed N times in parallel

- CPU/GPU Synchronization
- GPU Memory Management

Thursday, August 5, 2010

GPGPU

CUDA Stream Programming

Example: Vector Addition Kernel

Device Code

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
~_global wvoid vecAdd(float* A, float* B, float* C)
{

int 1 = threadldx.x + blockDim.x * blockIdx.x;

C[i] = A[1] + B[1];

int main()

{
// Run grid of N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);

Thursday, August 5, 2010

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global wvoid vecAdd(float* A, float* B, float* C)

{
int 1 = threadlIdx.x + blockDim.x * blockIdx.x;

C[i] = A[1i] + B[1];
Host Code

int main ()

{
// Run grid of N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);

Thursday, August 5, 2010

Thursday, August 5, 2010

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel

Kernell<<<>>>()

Kernel Variations and Output

__global void kernel(int *a)

{

int idx = blockldx.x*blockDim.x + threadldx.x;

}a[idX]=7: Output: 777777777T7TT7TT7TT7TT7TT77

__global__ void kernel(int *a)

{

int idx = blockldx.x*blockDim.x + threadldx.x;
a[idx] = blockldx.x; Output: 0000111122223333

}

__global void kernel(int *a)

{

int idx = blockldx.x*blockDim.x + threadldx.x;
alidx] = threadldx.x;

}

Thursday, August 5, 2010

Example: Shuffling Data

// Reorder values based on keys
// Each thread moves one element

__global void shuffle(int* prev array, int*
new _array, int* indices)

int 1 threadIdx.x + blockDim.x * blockIdx.x;

new array|[i] = prev _array[indices[i]];

Host Code

int main ()

{
// Run grid of N/256 blocks of 256 threads each

shuffle<<< N/256, 256>>>(d old, d new, d ind);

Thursday, August 5, 2010

OpenCL
- Attempts to be OpenGL for GPGPU
- Almost identical to CUDA
Need for a higher level languages
- Jacket for MATLAB
- PyCUDA

Thursday, August 5, 2010

The Future

Massively Multi-Core Processors

Thursday, August 5, 2010

Intel's new Nehalem-EX CPUs rock servers with
eight cores, 16 threads, infinite sex appeal

By Tim Stevens £ posted May 27th 2009 8:06AM

Nehalem-EX Overview

Up to 8 Cores/16 Threads
24MB of Shared Cache
Integrated Memory Controllers
4 High-bandwidth QPI Links
Intel® Hyper-Threading

Intel® Turbo Boost

2.3B Transistors

P— — [,

The Ne)gt Generation Intelligent Expandablé»';fPlatform

Xeon . '

ra e

What's that, you have an array of six-core CPUs in your rack? That is so last vear. You're going to feel
pretty foolish when all the cool admins start popping eight-core chips up in their closets this fall. That's
the number on offer in Intel's latest, the Nehalem-EX. It's an evolution of the architecture that some of
vou may be spinning in your Core 17 machines, but boosted to support up to 16 threads and 24MB of
cache. 2.3 billion transistors make the magic happen here, and Intel is pledging a nine-times improvement
in memory bandwidth over the Xeon 7400. Chips are set to start hitting sockets sometime later this year,
and while nobody's talking prices, staying hip in the enterprise server CPU crowd doesn't come cheap.

“You have an array of
six-core CPUs in your
rack? You're going to
feel pretty stupid when
all the cool admins start
popping eight-core
chips.

Thursday, August 5, 2010

Number of cores so large that:

- Traditional caching models don’t work

Cannot keep coherent cache

- Network on a chip?

Thursday, August 5, 2010

Haven't even fouched it
- Coherent and Uncoherent caches
- Uniform vs Non-Uniform Memory Access? TM?
- Special Purpose Hardware?

Schedulers?

Programming Languages

Thursday, August 5, 2010

Up to 12 cores
30% lower power usage
Similar programming abstractions:

- 12 cores, each with 128-bit wide SIMD units (SSE)

256-bit wide SIMD units (AVX)

Thursday, August 5, 2010

Putting all those transistors to use
- Many ALUs
- Many Cores
- Intricate Cache Hierarchies
- Very difficult to program

Graphics is way ahead of the game

Thursday, August 5, 2010

“The Landscape of Parallel Computing Research”

http://view.eecs.berkeley.edu/wiki/Main Page

Thursday, August 5, 2010

http://view.eecs.berkeley.edu/wiki/Main_Page
http://view.eecs.berkeley.edu/wiki/Main_Page

Kayvon Fatahalian

* Many of these slides are inspired by or copied from him

Mike Houston

e CS448s “Beyond Programmable Shading”

Jared Hobernock & David Tarjan

* CS193g “Programming massively parallel processors”

e (I TA’d this last quarter)

Thursday, August 5, 2010

