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CS148 Midterm, Summer 2010
You have 2 hours to complete this exam

The exam is closed-everything, including calculators

The question paper has 10 pages & 6 questions (including extra credit). Avoid attaching 
extra sheets as far as possible. You may use blank scratch sheets, but don't submit them. 
You don't need to show steps in a solution unless they're explicitly asked for.

NAME: ________________________________________________________________

1. Light and Color (8 points)

1a) Andrew is playing with cyan, magenta and yellow paint. Assuming the paints mix 
perfectly (no chemical  reactions),  what colors would he observe when he mixes the 
following? (4 points)

Cyan + Magenta =       Blue                   

Cyan + Yellow =       Green                 

Yellow + Magenta =       Red                    

Cyan + Magenta + Yellow =       Black                 

1b)  Bob decides to  stand up to the CIE and choose  his  own set  of  primaries in an 
additive color space (mixing beams of light). Bob's primaries are (R + B) / 2, (B + G) / 2 
and (G + R) / 2. In other words, he constructs each of his primaries by taking two CIE 
primary beams at half the reference intensities, and mixing them together. Is the gamut 
of his color space smaller than, larger than, or equal to CIE RGB? Briefly justify your 
answer. (4 points)

The gamut of Bob's space is much smaller than CIE RGB.  
You must take positive amounts of primaries to construct  
colors  in  the  gamut,  which  is  the  set  of  all  physically  
realizable  colors!  Any  linear  combination  of  Bob's  
primaries with positive coefficients  can be realized with  
positive amounts of the RGB primaries as well, but R, G  
and B themselves cannot be constructed in Bob's space,  
since each of his primaries has at least two of R, G and B.  
We also accepted the graphical chromaticity argument on the right. Note that the fact  
that the component beams are half-intensity has nothing to do with the answer. Bob's  
gamut would still be smaller if he used 2(R + B), 2(B + G) and 2(G + R) instead.
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2. Cameras, Displays and Compression (17 points)

2a) Alice is exploring Central Asia, and is trying to take a picture of wild horses running 
across the plains, with high peaks in the distance. She places her camera on a tripod, 
focuses  on  the  horses  (which  are  fairly  close  to  her),  and  clicks  the  shutter.  Upon 
reviewing the shot, she finds the exposure is correct (so the picture is neither too bright  
nor too dark), but both the horses and the peaks are blurry. How should she adjust her 
camera  variables  to  take  a  picture  which  is  equally  well-exposed,  but  in  which 
everything is sharp? (Tick one option for each variable.) (3 points)

Shutter Speed: Shorter exposure time       ✔      Longer exposure time ______
Aperture: Increase _______ Decrease        ✔      
Sensitivity (ISO): Increase        ✔        Decrease  ______
(Shorter  exposure  time  to  freeze  moving horses,  smaller  aperture  for  depth  of  field  
extending to the mountains, higher sensitivity to compensate for the other two changes.)

2b) Recall that a Bayer filter is a mask of red, green and blue filtering pixels placed over 
a digital sensor. State one advantage and one disadvantage of this filter. (2 + 2 points)

Advantage: Provides sensing in color!

Disadvantage: Some are:
• Reduces sensitivity compared to base (monochrome) sensor
• Introduces demosaicing artifacts.

(We realized in retrospect the question was ambiguous, since we had not specified what  
we were comparing a Bayer sensor to. We intended a comparison with the underlying  
monochrome sensor.  All  answers that  correctly contrasted Bayer with other types of  
color sensors were also given full credit.)

2c) Camera lenses typically  contain multiple  individual  elements (separate  pieces  of 
glass), even when the lens has a single focal length and does not zoom. Why do you 
think this is so? (2 points)

To correct aberrations.



2d) Daila tosses a fair coin a million times to produce a sequence of heads (0) and tails 
(1).  Would you expect  this  sequence  to  have  high or  low Kolmogorov complexity? 
Briefly justify your answer (an informal argument is fine). (2 points)

With great  probability,  the string has high Kolmogorov complexity.  We require  exact 
reconstruction, so tossing the coin again is not a reconstructive procedure.

FYI:  This  observation is  called  the  Incompressibility  Theorem.  A string of  n  bits  is  
c- incompressible if its minimum description length exceeds n  – c bits. Since there are  

only 1 + 2 + 2
2
 + … + 2

n – c
 = 2

n – c + 1
 – 1 descriptions with at most n – c bits, the  

number of c-incompressible bitstrings is at least   2
n
 – 2

n –  c  + 1
 + 1, which rapidly  

approximates 2
n
 as  c grows.  In short,  a long random string is  almost  certainly  not  

compressible by more than a very small amount. (You didn't need to state or prove this  
theorem for full credit.)

2e)  Eve decides  to  construct  her  own “wavelet”  encoding for  sequences  of  positive 
numbers.  For every successive pair  of  numbers <A, B>, she computes the “average 
coefficient” as sqrt(A * B), and the “detail coefficient” as sqrt(A / B), where sqrt denotes 
the (positive) square root. In other words, she replaces the arithmetic mean (A + B) / 2 of 
Haar wavelets with the geometric mean.

- Compute the “wavelet” transform of [4 4 1 1] using this encoding (Hint: this is another 
sequence of the same size.) (4 points)

Average Detail
4 4 1 1
 4    1  1  1
    2    2

So the “wavelet” transform is [2 2 1 1].

- Would this be a good way to compress data on a typical PC? If so, why, and if not, why 
not? (2 points)

It would not, for several reasons including:
• More floating point roundoff errors with multiplication, division and sqrt
• Inefficiency of sqrt
• Possibility of division-by-zero errors



3. Image Processing (7 points)

3a) Is the dynamic range of an image that has 16 bits per channel necessarily greater 
than that of an image with 8 bits per channel? Argue for or against. (2 points)

No, it is not. 16 bits are better for resolving subtle variations in intensity, because they  
subdivide the intensity  scale  more finely.  However,  the upper and lower ends of  the  
scale, indicating the maximum and minimum intensities that can be represented in the  
image  (the  dynamic  range),  are  completely  independent  of  the  bit  depth,  and  are  
typically related to the device used to capture the image or display it.

3b) Here is a signal  f that needs to be smoothed (blurred). On the empty graph on the 
right,  sketch  a  one-dimensional  kernel  g that  you  think  will  best  smooth  f when 
convolved with it. The overall scale of your drawing is not important. (2 points)

(A gaussian, as shown, is probably the best answer,  
but we accepted box, tent etc. filters as well. Most  
curves  that  are  maximum  at  0  and  decay  
symmetrically to zero on either side (and integrate to  
1,  but  we  didn't  require  you  to  specify  this)  will  
work. A constant function is not a valid answer: that  
will just flatten the entire curve to a constant value.)

3c) Carol shrinks an image to half its size (one-quarter its area) by deleting every second 
row and every second column of pixels. Is this the best way to resize the image? If not, 
how would you do it? (3 points)

This is not a good way to resize an image, since it throws out too much data. (Consider,  
as one of you pointed out,  what happens to an image where alternating columns of  
pixels  are  black  or  white.)  Observe  that  each output  pixel  corresponds  to  the  area  
covered by a 2x2 block of input pixels. Assigning each output pixel the average color of  
the corresponding 4 input pixels will instantly improve matters.
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4. Geometry (6 points)

We'll use the following notation for 2D transformation matrices:

T(x, y): Translates a point by (x, y)
R(a): Rotates counter-clockwise around the origin by a degrees
S(sx, sy): Scales the coordinates of a point, relative to the origin, by (sx, sy)

You are given a unit square with minimum corner (0, 0):

In the graph below, sketch what happens to the square when we apply
T(0, -0.5) * R(45) * S(0.5, 1) to it. Remember: we apply transforms right-to-left. Overall 
scale of your drawing is not important.
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5. Rendering (12 points)

Anand wants to render an outdoor scene with a fog effect. He observes that fog has the 
following characteristics:

– it has a color of its own, usually white but sometimes other colors
– shapes are faded to the fog color with distance

5a) Help Anand write a  fog(d, src_color, fog_color, fog_density) function that takes 4 
parameters:

– d: the distance to an object
– src_color: the original (shaded) color of the object
– fog_color: the color of the fog
– fog_density: how quickly shapes fade to the fog color – greater density implies a 

quicker fade

fog(...) returns the perceived color of the object seen through the fog. Write either a math 
formula  or  pseudocode  for  a  plausible  fog(...)  function.  (There  is  no  single  correct 
answer. Your solution should satisfy Anand's two criteria at least.) (4 points)

One simple solution is:

lerp(a, b, x) = (1 – x) * a + x * b
fog(...) = lerp(src_color, fog_color, min(d * fog_density, 1))

POV-Ray uses this variant instead:

fog(...) = lerp(src_color, fog_color, 1 – exp(–d * fog_density))

As a sanity check, you should ensure that your formula gives src_color when d = 0, and  
fog_color when d is very large.



5b) Extend the basic raytracing loop, in pseudocode, to handle a uniform fog throughout 
the scene. You may assume you are given the  fog(...) function as a black box. Ignore 
refractions. (8 points)

Note: Yes, we do want you to write the whole loop, ignoring refractions. Syntax is not 
important, and you can assume you have all the math functions available to you.

We'll  assume  the  constants  FOG_COLOR  and  FOG_DENSITY  are  predefined.  The  
really tricky part is modifying the diffuse shading calculations to take into account the  
fog between the intersection point  and each light  source.  We'll  make the simplifying  
assumptions that each light source is a point (or can be approximated as one) and lights  
the object directly. The maximum fog component in the net diffuse color is limited by  
FOG_COLOR. Hence we can't  simply apply the  fog(...) function to the diffuse color  
contributed  by  each  light  source,  since  that  could  add  up  to  a  net  fog  component  
n * FOG_COLOR, where n is the number of lights. Nor can we apply fog(...) to the net  
diffuse  color,  since that  gives equal weight  to both near and far light  sources.  Our  
solution apportions (1 / n)th the total fog for each light source, which is a bit of a hack.  
You get close to full credit if you recognized this as an issue.

function traceRay(ray) returns Color
(obj, intersection) = getFirstIntersection(ray)
d = distance to intersection point
if obj is a light source

light_color = getLightColor(obj)
return fog(d, light_color, FOG_COLOR, FOG_DENSITY)

else
diffuse_color_fog = RGB(0, 0, 0)
n = total number of lights
foreach light source light

diffuse_color_nofog = getDiffuseShading(light, obj, intersection)
d_light = distance to light
diffuse_color_fog += fog(d_light, diffuse_color_nofog,
                                         FOG_COLOR / n, FOG_DENSITY)

end foreach

reflected_ray = getReflectedRay(ray, intersection)
reflectance = getSurfaceReflectance(obj, intersection)

color = combine(diffuse_color_fog, reflectance * traceRay(reflected_ray))
return fog(d, color, FOG_COLOR, FOG_DENSITY)

end if
end function



6. Extra Credit (+10 points)

Recall that a 2D shear matrix (for non-homogenous coordinates) is one that has the form 

[1 s
0 1]  (horizontal shear) or [1 0

s 1]  (vertical shear). There is a connection between 

shearing and rotation, as can be seen in this sequence.

This has been exploited in image processing, as shearing maps are easily performed by 
shifting scan-lines (columns or rows). Explore this connection by writing the 2D rotation 

matrix  [cos −sin 
sin  cos ]  as a product of a horizontal shear, then a vertical shear, and 

finally another horizontal shear. Show the steps in your reasoning.

Many of you got the approach right for this one. The decomposition was described by  
Alan Paeth in “A Fast Algorithm for General Raster Rotation”, Graphics Interface '86.  
Writing out the desired relation in matrix notation, we have:

[cos −sin 
sin  cos ] = [1 

0 1 ] [1 0
 1] [1 

0 1 ] = [1 
 1 ] [1 

0 1 ]
                                                                                = [1 1 

 1 ]



Equating  corresponding  elements  of  the  LHS  and  RHS,  we  get  4  equations  in  3  
unknowns (α, β and γ) which are fortunately consistent. Solving any 3 of them, we get

α = γ = (cos θ – 1) / sin θ
β = sin θ

This is enough for full credit. However, a further simplification is possible, if you note  
(by standard trigonometric identities) that (cos θ – 1) / sin θ = –tan (θ / 2). So

α = γ = –tan (θ / 2)
β = sin θ


