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Digital Camera

● Captures images on a digital sensor (CCD/CMOS/...)
● Structurally similar to film cameras
● Digital tech allows

● Instant review
● WYSIWYG viewing without bulky SLR mechanism
● In-camera adjustments
● Various advanced shooting aids

● We'll mostly study still cameras, not video
● Our comments will apply in large part to video cameras



  

Category Illustration Examples
Compact
(Small Sensor)

Canon Powershot ELPH 180
Panasonic Lumix LX7
Apple iPhone

Compact/Mirrorless
(Large Sensor)

Olympus EM1
Panasonic GX8

SLR Nikon D3300, D5
Canon EOS 1DX

Rangefinder Leica M

Medium/Large Format Hasselblad H6D
Phase One 645 system

Common Types of Digital Still Cameras

(Images: dpreview.com)



  

Image Formation in an SLR

(Image: Blue Moon Productions, 2009)



  

Pinhole Camera

Object
Inverted image

on screen

Pinhole
Light-tight box

Light rays

● Problem: Very little light gets through (for an ideal
pinhole, just one ray per object point)

● Solution: Use a lens to gather more light



  

Optics Review: Reflection
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Angle of incidence = Angle of reflection



  

Optics Review: Refraction
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● Light bends at interface
between media

● Snell's Law:

η1, η2 – refractive indices
c1, c2 – speeds of light

● Total internal reflection: If
(η1/η2) sin θ1 > 1, light reflects
back into source medium
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Optics Review: Thin Lens

1
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● Thin lens equation:
● f – focal length
● S1 – object distance, S2 – image distance

● Represents ideal imaging system: all rays from an object point
converge on a single image point

(Wikipedia)



  

When Conditions Aren't Ideal
● Spherical aberration

● Rays from single object
point don't converge at
same image point

● Reduces image sharpness

● Chromatic aberration
● Different wavelengths

refract differently
– different refractive index for

each wavelength
● Color fringes at object

edges
(Images: Wikipedia)



  

Focusing a Camera
● Unlike pinhole cameras,

lens cameras have only
one object plane in
perfect focus

● Distance between lens
and sensor governs
plane of focus

● Most cameras move
(elements of) the lens
relative to the rest of the
camera body



  

Changing the Focal Length of the Lens
● Wide-angle lenses

(small f) capture more
of the scene

● Telephoto lenses
(long f) capture less of
the scene

● The angular range
captured by a lens on a
given sensor is called
its field of view (FOV)

Top: Wide-angle (f = 24mm)
Bottom: Telephoto (f = 392mm)

(sensor: 35mm film)(Photos: dpreview.com)



  

Changing the Focal Length of the Lens

● Wide-angle lenses accentuate depth differences,
telephotos compress them
● That's why a cricket bowler and batsman look the

same size on TV (shot with a telephoto), although
one's much further away than the other

Wide-angle TelephotoStandard



  

Changing the Focal Length of the Lens

● Wide-angle portraits can look wonky
● Nose is nearest camera and looks bigger
● Ears and hair are further away and look smaller

Wide-angle TelephotoStandard



  

Exposure

● To take a picture, shutter is opened and light hits
sensor for a specified time

● Exposure: Amount of light hitting sensor while
shutter is open

● Exposure is affected by:
● Shutter Speed: How long shutter is open
● Aperture: Size of lens opening



  

Shutter Speed Affects Motion Blur

Slow shutter speed Fast shutter speed



  

Aperture Affects Background Blur

Formally called depth of field (DOF): the depth
range that is approximately in focus

Large aperture: small DOF Small aperture: large DOF



  

Sensor Characteristics

● Size
● Larger sensors have

larger FOV for a given
lens

● Sensitivity (aka ISO)
● High sensitivity ⇒ 

more noise
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Digital Sensor Characteristics

● Resolution: Number of pixels, e.g. 10 megapixels
● “Megapixels don't matter!”

● Pixel Pitch: Size of a single pixel
● This does matter
● Larger pixels capture more light, hence have less noise

at the same sensitivity rating
● A 10 megapixel DSLR typically has much less noise

than a 10 megapixel compact camera



  

Digital Sensor Layout

● A typical basic sensor is monochromatic (only captures
intensity variations)

● A Bayer filter placed over the sensor passes red, green
and blue light to different pixels
● Twice as many green pixels as red or blue
● Full RGB data at each pixel is

computed by interpolation
(demosaicing)

● 2/3 data is reconstructed!

● There are other less
common layouts as well

(Wikipedia)



  

RGB Displays

● Monitors and TVs: triads of red,
green and blue subpixels
● Cathode Ray Tube (CRT): Electron

gun hits red, green or blue
phosphor

● Liquid Crystal Display (LCD): R/G/B
filter placed over each subpixel

● Projectors: RGB components
projected onto same pixel
location, either simultaneously
or in rapid succession

Shadow Mask Layout

Aperture Grille Layout (Im
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Compression

(thanks to Pat Hanrahan for much of this section)



  

Typical Image And Video Data Rates
● Image

● 640 x 480 x 24b = ~0.75 MB
● 1024 x 768 x 24b = ~2.5MB

● DVD
● 720 x 480 x 24b x 30f/s = ~30 MB/s

● High Definition DVD
● 1920 x 1080 x 24b x 30f/s = ~178MB/s

● Digitized film and high-end digital video
● 4000 x 3000 x 36b x 30f/s = ~1.5GB/s
● 8 TB for one 90 minute movie!



  

Lossless vs Lossy Compression 
● Lossless

● All information stored
● Exact original can be reconstructed
● Typically used for illustrations
● e.g. BMP, PNG

● Lossy
● Some information discarded
● Goal: discard information humans won’t notice
● Much higher compression ratios possible
● Typically used for photographs
● e.g. JPEG



  

Kolmogorov Complexity

● Length of shortest program that can exactly 
generate the data

z ← z2 + c
program < 1KB

vs

2560 × 1920 PNG,
8.7 MB



  

Lossless: Run-Length Encoding (RLE)

BWBBBBBBBBBBBBWWWWWWBBBW

BW{12}B{6}W{3}BW



  

Lossless: Huffman Coding
● Given: set of m symbols with occurrence frequencies

p1, p2, …, pm ∊ [0, 1]

● E.g. sequence of bytes contains 256 possible symbols

● Problem: Assign binary string (codeword) of length bi to
each symbol s.t.
● No codeword is a prefix of another (for unique decoding)
● ∑ bi pi (normalized length of encoding) is minimized

● Can be approximately solved in O(m log m) time using a
binary tree and a priority queue
● Requires symbol frequencies to be independent



  

Huffman Coding: Basic Algorithm
● Build tree bottom-up

● Add a node for each symbol to the priority queue, sorted by
increasing frequency (rarest first)

● Repeat until queue has a single node

– Pop first two nodes
– Make them children of a new node
– New node frequency = sum of child frequencies
– Enqueue new node

● Surviving node is root of final tree
● The two descendant edges of each node in the final tree are labeled 0

and 1

● Codeword of symbol (leaf) is label sequence of path from root



  

Huffman Coding: Demo

B 0.1

C 0.1

A 0.2

D 0.2

E 0.4

Front



  

Huffman Coding: Demo

B C

BC A 0.2

D 0.2

BC 0.2

E 0.4

Front



  

Huffman Coding: Demo

B C

BC

A D

AD

BC 0.2

E 0.4

AD 0.4

Front



  

Huffman Coding: Demo

B C

BC

A D

ADE

BCE

AD 0.4

BCE 0.6

Front



  

Huffman Coding: Demo

BCEAD 1.0

Front
B C

BC

A D

ADE

BCE

BCEAD



  

Huffman Coding: Demo

BCEAD 1.0

Front
B C

BC

A D

ADE

BCE

BCEAD

0 1

0 1

0 1 0 1



  

Huffman Coding: Demo

BCEAD 1.0

Front
B C

BC

A D

ADE

BCE

BCEAD

0 1

0 1

0 1 0 1

Codewords
A: 10
B: 000
C: 001
D: 11
E: 01



  

Huffman Coding: Demo

● Encoding text with letters ABCDE
● Naïve 3-bit coding

● e.g. A: 000, B: 001, C: 010, D: 011, E: 100
● 3 bits/letter

● Huffman coding
● A: 10, B: 000, C: 001, D: 11, E: 01
● (0.1 + 0.1) * 3 + (0.2 + 0.2 + 0.4) * 2 = 2.2 bits/letter



  

Lossy: Chroma Subsampling
● General idea: more important to preserve contrast

than color
● Separate image into luminance and chroma

channels
● Reduce resolution of chroma channel



  

Lossy: Transform Coding
● General idea: project vector of n values (e.g. pixels of

image) to another n-space where only a few
dimensions hold the majority of the data

● Change of basis, like Principal Component Analysis
● Map to a1b1 + a2b2 + … + anbn, where {bi} is new basis
● (a1, a2, ..., an) encodes data
● Less significant coefficients ai can be approximated or

discarded (this is the lossy step)

● Discrete Cosine Transform: JPEG
● Wavelet Transform: JPEG2000



  

Example of 2x2 (4D) Pixel Basis



  

Discrete Cosine Transform (DCT)
● Similar to Fourier: decompose into low-frequency (base) and

high-frequency (detail) components
● Basis is sequence of (discrete) cosine waves of increasing

frequency

● One-dimensional, for k = 0, …, N - 1:

● Higher k ⇒ higher frequency

● Multi-dimensional:
product of 1D functions
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Lossy: JPEG

● For every 8x8 block of pixels
● Compute DCT coefficients
● Quantize coefficients (round to discrete steps)

– Humans are bad at judging exact high-frequency brightness
variation, so higher coefficients are quantized more coarsely

– This is the lossy step

● Entropy-encode coefficients
● Huffman code based on entire image
● Incorporates block-based run-length data



  

JPEG DCT

8x8 block of pixels DCT coefficient matrix
(lighter color ⇒ higher value)

This corner is stored in highest fidelity

This corner is stored in lowest fidelity

(Watson, 1994)



  

JPEG Quantization

÷

=

DCT coefficients (rounded) Quantization matrix

Quantized coefficients



  

JPEG Pipeline

Original (greyscale) image DCT coefficients (rounded)

Quantized coefficients Entropy encoding order

(W
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JPEG Compression Levels

Lossless 354 x 300 PNG - 214
KB

JPEG quality 75 – 20.2
KB

JPEG quality 10 – 4.6
KB

JPEG quality 1 – 2.4
KB



  

Wavelets

● Support: Region where function is non-zero

● Wavelets don't require subdividing the image into
blocks, since they are themselves local functions
● Reduces blocky artifacts

Wavelets have
local support

Cosine waves have
global support



  

Simplest Wavelet: Haar

● “Store the difference and pass the sum”
● Represent every two successive values A, B by

● (A + B) / 2 (average)
● (A – B) / 2 (detail)

● Allows perfect reconstruction
● A sequence of n values becomes two sequences

of n/2 values each



  

Haar Wavelet Example
● Let's recursively compute a pyramid of averages

and detail coefficients for the sequence [9  7  3  5]

● Wavelet transform of sequence = [6  2  1  -1]

(Stollnitz, DeRose & Salesin, 1995)

Average value
Low-res detail
High-res detail



  

Scaling and Wavelet Functions
● The average is computed via

a scaling function
● Low-pass filter
● Gives lower resolution,

smoothed version of image

● The detail coefficients are
computed via wavelet
functions
● High-pass filter
● Capture local deviations
● Can be discarded/quantized for

lossy compression



  

The Example Again

(Stollnitz, DeRose & Salesin, 1995)

[9  7  3  5]

Base scaling function

Wavelet functions
Note: Scaling functions of next
higher resolution are derived
from scaling + wavelet functions
of current resolution



  

JPEG2000: Incrementally add detail

Combined to
give “average
image” for next
higher resolution
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