
  

Image Processing

CS475 / 675, Fall 2016

Siddhartha Chaudhuri



  

Image as Signal

● An image can be thought of as
● Piecewise constant function, or
● Uniform sampling of some underlying function

Illustration in 1D
(Wikipedia)



  

Image as Signal

(Wikipedia)

2D heightmap image Visualized in 3D as heightfield



  

Color Space Operations
● Change pixel color based only on the current value at that

position
● No looking at any other pixels

● View as composition of functions
● Image function f : ℝd → C maps position u ∈ ℝd to color

f(u) ∈ C

● Let's apply the function g : C → C' to the image
– e.g. g increases brightness (luminance)
– C' may or may not be the same color space as C

● The color at u is then g(f(u))

● In other words, the image is now the function g ∘ f



  

Example: Increase Brightness

Source Result



  

Example: Increase Contrast

Source Result

Note: The “levels” control can be used for a similar effect



  

Example: Desaturation (C' ≠ C)

Source Result

A common mapping is Y = 0.3R + 0.59G + 0.11B



  

Curves: The Swiss Army Knife

● Visual manipulation of the function g
● Offers most fine-grained control
● (Demo in GIMP)

Input

O
ut

pu
t g

Histogram of
image pixels



  

High Dynamic Range Images (HDR)

● The real world contains a far
greater range of intensities
(dynamic range) than normal
displays/printers can reproduce

● Solution:
● Capture a large range

– Normal cameras are limited (best is
about 5,000 : 1), so we must use
tricks

● Compress to displayable range
– This is called tone mapping



  

High Dynamic Range Images (HDR)

16 photographs of Stanford Memorial Church, each with double the
exposure of the previous one, merged into an HDR image that shows

detail in both shadows and highlights (D
eb

ev
ec

, M
al

ik
 a

nd
 W

ar
d)



  

Capturing an HDR Image

● Take many images from the same location, with different
exposures
● Vary shutter-speed or sensitivity, not aperture! (we don't

want different amounts of blur in different images)
● Longer exposures capture shadow detail, but highlights are

clipped to white
● Shorter exposures capture highlight detail, but shadows are

clipped to black
● Merge into a single floating-point image that represents

the entire range of intensities



  

Visual Response to Dynamic Range

● Our eyes have roughly logarithmic response to
intensity of light
● (and many other stimuli as well – see Weber-Fechner

Law and Stevens' Power Law)

● Doubling any intensity produces (roughly) the
same increment in perceived brightness
● Hence we use logarithmic scales like decibels for sound

and stops for exposure



  

Displaying an HDR Image: Tone Mapping

● Naïve solution: Linearly map HDR
range to displayable range

● 100,000 : 1 → 100 : 1

● Problem: Flat appearance
● Linear scaling compresses the

lower end of the range too
much, so the reproduction lacks
contrast in the midtones and
shadows which form the bulk of
the image

0



  

Improvement: Logarithmic Mapping

Opens up lower end of the range



  

Advanced Tone Mapping

Adaptive histogram compression Taking into account glare, contrast,
scotopic response etc. (G

re
g 

W
ar

d)



  

Color + Image Space Operations

● New color of pixel computed from
● its current color
● the colors of its neighbors

● We'll study an operation called convolution
● Widely used for image filters

● e.g. blur, sharpen, edge-detect, emboss...



  

Convolution

● Recall: Image is function f mapping positions to
colors

● Convolution measures overlap of f with another
function g as it is (reversed and) shifted over f

● Note: The convolution of two functions f and g is
itself a function f * g

[ f ∗g ]t  = ∫
−∞

∞

f g  t−d  = ∫
−∞

∞

g  f t−d



  

Convolution Example

Tracing out the convolution of two box functions as the (reversed)
green one is moved across the red one. The convolution, a
triangular function, gives the area under the product of the

functions for every position of the moving function

(W
ik

ip
ed

ia
)



  

Discrete Convolution

● If f and g are defined over integers ℤ (e.g. a 1D raster
image), their discrete convolution is

● Intuition:
● Center the kernel/filter function g at the nth pixel
● Weight every pixel in the image by the value of g there
● Add up the weighted values to get the new color at the nth 

pixel

[ f ∗g ]n = ∑
i=−∞

∞

f i g n−i  = ∑
i=−∞

∞

g i f n−i



  

Convolution in 2D

● Continuous

● Discrete (this is what we're going to look at)

[ f ∗g ]m ,n = ∑
i=−∞

∞

∑
j=−∞

∞

f i , j g m−i , n− j 

[ f ∗g ]s , t  = ∫
−∞

∞

∫
−∞

∞

f  ,g s− , t−d d 



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

0 -1 0

-1 5 -1

0 -1 0
* = ?

Important: Here the kernel matrix is symmetric,
but from now on any kernel matrix shown has

already been flipped on both axes

(we'll assume everything outside the 3x3 is zero)



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

-8

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

-8 21

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

-8 21 -9

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

-8 21 -9

5

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

-8 21 -9

5 -14

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

7 7 1

-8 21 -9

5 -14 39

0 -1 0

-1 5 -1

0 -1 0



  

Discrete 2D Convolution: Demo

2 3 1

0 5 1

1 0 8

0 -1 0

-1 5 -1

0 -1 0
* =

7 7 1

-8 21 -9

5 -14 39



  

Filter: Blur
1 1 1

1 1 1

1 1 1* =

(GIMP documentation)

(We'll assume the kernel is
normalized before convolution

so the entries sum to 1)



  

Filter: Sharpen
0 -1 0

-1 5 -1

0 -1 0* =

(GIMP documentation)



  

Filter: Edge-Detect
0 -1 0

-1 4 -1

0 -1 0* =

(GIMP documentation)



  

Filter: Emboss
-2 -1 0

-1 1 1

0 1 2* =

(GIMP documentation)



  

Resizing Images

We'll look at this during the class on sampling,
aliasing etc.



  

How Does Superman Fly?
(Thanks to Alexei Efros for this slide)

Superhuman powers?
OR

Image Matting and Compositing?

http://graphics.cs.cmu.edu/courses/15-463/2006_fall/www/Lectures/BSMatting.pdf



  

Background Subtraction and Matting

● General idea: Shoot someone in front of one
background, make it look like (s)he's in front of
another



  

Background Subtraction and Matting
● General idea: Shoot someone in front of one

background, make it look like (s)he's in front of
another



  

Background Subtraction and Matting
● How does one remove the blue/green screen (“pull the

matte”)?
● Possibility: Delete all approximately blue/green pixels

– Don't wear a blue tie!
– What about translucent parts of the foreground?
– What about pixels at edges of foreground object, partially covering

foreground and partially covering background?

Coverage of single pixel

FG

BG

Final pixel appearance



  

The Problem in the Abstract
● Foreground pixel has color (R

F
, G

F
, B

F
),

opacity/coverage α
F

● Background pixel has color (R
B
, G

B
, B

B
)

● Final pixel has color (R, G, B)

● Solve: R = α
F
R

F
+ (1 – α

F
) R

B

G = α
F
G

F
+ (1 – α

F
) G

B

B = α
F
B

F
+ (1 – α

F
) B

B

for (R
F
, G

F
, B

F
, α

F
)

● Impossible with 3 equations and 4 unknowns



  

Petros Vlahos Algorithm
● Vlahos invented blue screen matting

● Founded Ultimatte, got an Oscar in 1964

● Vlahos Assumption: B
F
 = βG

F
, for some user-specified

β ∈ [0.5, 1.5]

● Why???
– Trial and error
– Human skin tone mostly maintains such a ratio

● With this assumption the equations are solvable
● Modern editions of Ultimatte use more refined versions of

this assumption

● See Smith & Blinn, 1996, for a newer approach


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

