Geometry

CS475 / 675, Fall 2016

Siddhartha Chaudhuri

Ödegaard and Wennergren, 2D projections of 4D "Julia sets"

Vectors: the "Physical" View

- Object ${\boldsymbol{u}}$ with direction and length/magnitude
- \mathbf{u} is vector in opposite direction with same length
- $\|\mathbf{u}\|$ denotes length of \mathbf{u}
 - Unit vector has length 1, is typically written with hat: $\hat{\mathbf{u}}$
- Multiplying a vector by a scalar changes its length

Addition of Vectors

• "Parallelogram Rule"

•
$$\mathbf{u} + (-\mathbf{v}) \equiv \mathbf{u} - \mathbf{v}$$

Dot Product

If θ is the angle between
 u and v, then

$$\mathbf{u} \cdot \mathbf{v} = \| \mathbf{u} \| \| \mathbf{v} \| \cos \theta$$

- This is also the length of the orthogonal projection of ${\bf u}$ onto ${\bf v},$ times the length of ${\bf v}$
- Note: $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$

Orthogonal and Orthonormal Vectors

- Orthogonal vectors are at right angles to each other
 - $\mathbf{u} \cdot \mathbf{v} = 0$
- Orthonormal vectors are at right angles to each other and each has unit length
- A set {**u**_{*i*}} of orthonormal vectors has

•
$$\mathbf{u}_i \cdot \mathbf{u}_j = 1$$
 if $i = j$

• $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ if $i \neq j$

Cross Product (only 3D)

U

Ĥ

V

- If θ is the angle between **u** and **v**, then $\mathbf{u} \times \mathbf{v} = (\|\mathbf{u}\| \| \|\mathbf{v}\| \sin \theta) \, \mathbf{\hat{w}}$
 - $\boldsymbol{\hat{w}}$ is a unit vector orthogonal to both \boldsymbol{u} and \boldsymbol{v}
 - "Right-Hand Rule":
 - Curl fingers of right hand from \boldsymbol{u} to \boldsymbol{v}
 - Thumb points in direction of $\mathbf{\hat{w}}$

Area of parallelogram = $\|\mathbf{u} \times \mathbf{v}\|$

Position Vector

- Identifies point in space
 - Interpreted as: tip of vector "arrow" when the other end is placed at a fixed point called the *origin* of the space

Vectors: the "Physical" View

- Directions and positions are *different*!
- "Legal" Operations:
 - Direction = Scalar * Direction
 - Direction = Direction + Direction
 - Position = Position + Direction
 - Direction = Position Position
- "Illegal" Operations:
 - Position = Scalar * Position
 - Position = Position + Position
 - Direction = Position + Direction
 - Position = Position Position

Cartesian/Euclidean *n*-space \mathbb{R}^n

- Vectors represented by real *n*-tuples of coordinates (u₁, u₂, ..., u_n)
 - 2D: (*x*, *y*)
 - 3D: (x, y, z)
 - Represents extent along orthogonal *coordinate axes*
 - Right-handed system: Curl
 right hand fingers from x axis to
 y axis, thumb points along z axis
- Length/magnitude: $\|\mathbf{u}\| = (u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}}$
 - From Pythagoras' Theorem

Cartesian/Euclidean *n*-space \mathbb{R}^n

- Let $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$
- Addition of vectors:

$$\mathbf{u} + \mathbf{v} \equiv (u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$$

• Multiplication of vector by scalar:

$$s\mathbf{u} \equiv (su_1, su_2, ..., su_n)$$

Cartesian/Euclidean *n*-space \mathbb{R}^n

• Dot Product:

$$\mathbf{u} \cdot \mathbf{v} \equiv (u_1 v_1 + u_2 v_2 + \dots + u_n v_n)$$

• Cross Product (remember, 3D only!):

$$\mathbf{u} \times \mathbf{v} \equiv (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

Another Way to Remember the Cross Product in \mathbb{R}^3

• Let
$$\mathbf{u} = (x_1, y_1, z_1)$$
 and $\mathbf{v} = (x_2, y_2, z_2)$
• $\mathbf{u} \times \mathbf{v} \equiv (y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2, x_1 y_2 - y_1 x_2)$

If **u** and **v** are 2D instead, this is the area of the parallelogram between them

Vectors: the "Mathematical" View

- *Vector space*: Set of objects (*vectors*) closed under
 - Addition of two vectors
 - Multiplication of a vector by a scalar (from field F)
- Necessary properties of vector spaces
 - Commutative addition: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
 - Associative addition: $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
 - Existence of additive identity 0: x + 0 = 0 + x
 - Can show: $0.\mathbf{x} = \mathbf{0}$ (prove!)
 - Existence of additive inverse -x: x + (-x) = 0

- Can show: $-\mathbf{x} = -1.\mathbf{x}$ (prove!)

Vectors: the "Mathematical" View

- Necessary properties of vector spaces (contd.)
 - Associative scalar multiplication: $r(s\mathbf{x}) = (rs)\mathbf{x}$
 - Distributive scalar sum: $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$
 - Distributive scalar multiplication: $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$
 - Scalar multiplication identity: $1 \cdot \mathbf{x} = \mathbf{x}$
 - Note: This says that the identity for multiplication of two scalars is also the identity for multiplication of a vector by a scalar

Basis and Dimension

- Linear combination of vectors $\{\mathbf{u}_i\}$: $\sum c_i \mathbf{u}_i$
 - $\{c_i\}$: Scalar coefficients
- {u_i} is *linearly independent* if no u_i can be expressed as a linear combination of the others
- *Span* of {**u**_{*i*}}: Set of all linear combinations
- *Basis* of vector space: (Possibly infinite) set of linearly independent vectors whose span is the entire space
- *Dimension* of vector space: Cardinality of basis
 - Note: All bases of a given space have same (possibly infinite) cardinality

Basis

- Let a vector space have basis $\mathbf{B} = [\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n]$
- Any vector **u** can be written as $\sum_{i=1...n} u_i \mathbf{u}_i$
 - Or compactly, $(u_1, u_2, ..., u_n)$
 - These are the coordinates of \boldsymbol{u} in basis \boldsymbol{B}
- Note:
 - We've generalized our original notion of coordinates: they're now relative to the selected basis (axes)
 - A point has different coordinates in different bases

Back to \mathbb{R}^n

• Has a basis $[\hat{\mathbf{u}}_1, \hat{\mathbf{u}}_2, ..., \hat{\mathbf{u}}_n]$ along coordinate axes

- 3D: **î**, **ŷ**, **î**
- Any *n* linearly independent vectors form a basis
 - Dot and cross products have same formula in righthanded orthonormal bases (but *not* in other bases!)

Change of Basis (example in 3D)

- Let $\left[u,\,v,\,n\right]$ be a basis ${\rm B}$ for a vector space
- Let coordinates of **u**, **v**, **n** in another basis B₀ be $\mathbf{u} = (u_1, u_2, u_3)$ $\mathbf{v} = (v_1, v_2, v_3)$ $\mathbf{n} = (n_1, n_2, n_3)$
- Let coordinates of **a** in B be (a_1, a_2, a_3)
- Let coordinates of \mathbf{a} in \mathbf{B}_0 be (a_1^0, a_2^0, a_3^0)

Change of Basis (example in 3D)

$$\begin{bmatrix} a_1^0 \\ a_2^0 \\ a_3^0 \end{bmatrix} = \begin{bmatrix} u_1 & v_1 & n_1 \\ u_2 & v_2 & n_2 \\ u_3 & v_3 & n_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Change of Basis (example in 3D)

• If B and B₀ are orthonormal, inverse of matrix is its transpose (*orthogonal matrix*)

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ n_1 & n_2 & n_3 \end{bmatrix} \begin{bmatrix} a_1^0 \\ a_2^0 \\ a_3^0 \end{bmatrix}$$

(only if bases are orthonormal)

Metric

- Assign non-negative real number d(u, v) to every pair of vectors u, v
 - Interpret as distance between \boldsymbol{u} and \boldsymbol{v}
- Necessary properties of metric
 - $d(\mathbf{u},\mathbf{v}) \geq 0$
 - $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$
 - $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ (Triangle Inequality)

\mathbb{R}^n as Metric Space

- Magnitude: L_2 norm: $\|\mathbf{u}\| = (u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}}$
- Metric $d(\mathbf{u}, \mathbf{v})$ defined as $\|\mathbf{u} \mathbf{v}\|$
- Other common magnitude functions: L_p norms

$$\|\mathbf{u}\| = (|u_1|^p + |u_2|^p + \dots + |u_n|^p)^{1/p}$$

- L₁ is "Manhattan" norm
- L_{∞} is "max" norm

Inner Product

- Assign scalar $\langle \mathbf{u}, \mathbf{v} \rangle \in$ field F to pair of vectors \mathbf{u}, \mathbf{v}
 - *F* is assumed to be set of real or complex numbers
- Necessary properties of inner product
 - $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$ (overline denotes complex conjugate)
 - $\langle s\mathbf{u}, \mathbf{v} \rangle = s \langle \mathbf{u}, \mathbf{v} \rangle$
 - $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- The dot product is a valid inner product for \mathbb{R}^n

Transformations of Vectors

(Thanks to Pat Hanrahan for this section)

- $\mathbf{u'} = T(\mathbf{u})$
- Why?
 - Modeling:
 - Create objects in convenient coordinates
 - Multiple instances of prototype shape
 - Kinematics of linked structures
 - Viewing:
 - Map between window and device coordinates
 - Virtual camera projections: parallel/perspective
- We'll stick to \mathbb{R}^2 for now

Translation

Scaling

Uniform

Non-uniform

Rotation

(counter-clockwise about origin)

Reflection

Composing Transformations

R(45)

T(1, 1) R(45)

Rotate, then Translate

Composing Transformations

T(1, 1)

R(45) T(1, 1)

Translate, then Rotate

Order Matters!

World Space and Object Space

- Transformation maps from one to the other
- Construct by composing sequence of basic transforms
 - Remember: Transforms apply *Right-to-Left* in our notation!

World Space and Object Space

- Let's look at the example on the right
- Object \rightarrow World:
 - Rotate by θ (ccw), then translate by \mathbf{t}
- World \rightarrow Object:
 - Translate by -t, then rotate by - θ

Make sure you understand this!

Translation

$$x' = x + t_x$$
$$y' = y + t_y$$

Scaling (and Reflection)

$$x' = s_x x$$
$$y' = s_y y$$

(Negative scaling cœfficients give reflection)

CCW Rotation By θ About Origin

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

Horizontal Shear

$$x' = x + sy$$
$$y' = y$$

Vertical Shear

$$x' = x$$
$$y' = sx + y$$

Types of 2D Transformations

- Linear Transforms: $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
 - Scaling
 - Rotation
 - Shear
 - Reflection
- Affine Transforms: T(u) = L(u) + a, where L is linear and a is a fixed vector
 - Translation
- Other, e.g. perspective projection
- How do we represent these in a common format?

Homogenous Coordinates (2D)

- Point $(x, y) \rightarrow (x, y, 1)$
- Direction $(x, y) \rightarrow (x, y, 0)$
- For any scalar c, $(cx, cy, ch) \equiv (x, y, h)$
- To convert back:
 - If h is 0: $(x, y, 0) \rightarrow (x, y)$
 - If *h* is non-zero: $(x, y, h) \rightarrow (x / h, y / h)$
- Note:
 - Not 3D vector space, just a new representation for 2D
 - Legal/illegal operations for directions & positions automatically distinguished!

Translation

$$\begin{aligned} x' &= x + t_{x} \\ y' &= y + t_{y} \end{aligned} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling (and Reflection)

$$\begin{aligned} x' &= s_{x} x \\ y' &= s_{y} y \end{aligned} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

CCW Rotation By θ About Origin

$$\begin{aligned} x' &= x \cos \theta - y \sin \theta \\ y' &= x \sin \theta + y \cos \theta \end{aligned} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{vmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \end{aligned}$$

Horizontal Shear

$$x' = x + sy$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Vertical Shear

$$x' = x$$
$$y' = sx + y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ s & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What about 3D?

- Very similar: $(x, y, z) \rightarrow (x, y, z, h)$
- Look up the formulæ!
- Rotation is a mess
 - Common method:
 - Map axis of rotation to a coordinate axis (similar to change of basis)
 - Rotate around the coordinate axis
 - Map back
 - Other approaches based on Euler angles and quaternions

Why Use Matrices?

• Compute the matrix once

 $x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$

- Don't repeatedly evaluate sines and cosines
- Combine sequence of transforms into a single transform
 - Store M = ABCD, apply M(**u**) instead of A(B(C(D(**u**))))
- The inverse of a sequence of transforms is just the matrix inverse
 - $(ABCD)^{-1} = D^{-1}C^{-1}B^{-1}A^{-1} = M^{-1}$

Hierarchical Modeling

- Graphics systems maintain a *current transformation matrix* (CTM)
 - All geometry is transformed by the CTM
 - CTM defines object space in which geometry is specified
 - Transformation commands are concatenated onto the CTM. The last one added is applied first:
 - CTM = CTM * T
- Graphics systems also maintain a *transformation stack*
 - The CTM can be pushed onto the stack
 - The CTM can be restored from the stack

Example: Articulated Robot

body

torso head shoulder leftArm upperArm **I**owerArm hand rightArm upperArm **l**owerArm hand hips leftLeg upperLeg lowerLeg foot rightLeg upperLeg lowerLeg foot

Example: Articulated Robot

translate(0, 5, 0);torso(); pushMatrix(); translate(0, 5, 0); shoulder(); pushMatrix(); rotateY(neck_y); rotateX(neck_x); head(); popMatrix(); pushMatrix(); translate(1.5, 0, 0); rotateX(l_shoulder_x); upperArm(); pushMatrix(); translate(0,-2,0); rotateX(I elbow x); lowerArm(); ... popMatrix(); popMatrix();

...