

Geometry

CS475 / 675, Fall 2016

Siddhartha Chaudhuri

 Ödegaard and Wennergren, 2D projections of 4D “Julia sets”

Vectors: the “Physical” View
● Object u with direction and length/magnitude
● -u is vector in opposite direction with same length
● ║u║denotes length of u

● Unit vector has length 1, is typically written with hat: û

● Multiplying a vector by a scalar changes its length

u u

2D 3D

Addition of Vectors

● “Parallelogram Rule”

● u + (-v) ≡ u - v

u

v

u + v

Dot Product

● If θ is the angle between
u and v, then

u‧v = ║u║║v║cos θ

● This is also the length of the orthogonal projection
of u onto v, times the length of v

● Note: u‧u = ║u║2

u

vθ

║u║cos θ

Orthogonal and Orthonormal Vectors

● Orthogonal vectors are at right angles to each
other
● u‧v = 0

● Orthonormal vectors are at right angles to each
other and each has unit length

● A set {u
i
} of orthonormal vectors has

● u
i
‧u
j
 = 1 if i = j

● u
i
‧u
j
 = 0 if i ≠ j

Cross Product (only 3D)

● If θ is the angle between u and v, then
u × v = (║u║║v║sin θ) w
● w is a unit vector orthogonal to both u and v
● “Right-Hand Rule”:

– Curl fingers of right hand from u to v
– Thumb points in direction of w

u

v

θ

w

Area of parallelogram = ║u × v║

Position Vector

● Identifies point in space
● Interpreted as: tip of vector “arrow” when the other

end is placed at a fixed point called the origin of the
space

x

y

Origin

Position

Vectors: the “Physical” View
● Directions and positions are different!

● “Legal” Operations:
● Direction = Scalar * Direction
● Direction = Direction + Direction
● Position = Position + Direction
● Direction = Position – Position

● “Illegal” Operations:
● Position = Scalar * Position
● Position = Position + Position
● Direction = Position + Direction
● Position = Position - Position

Cartesian/Euclidean n-space ℝn

● Vectors represented by real n‑tuples of
coordinates (u

1
, u

2
, ..., u

n
)

– 2D: (x, y)
– 3D: (x, y, z)

● Represents extent along
orthogonal coordinate axes
– Right-handed system: Curl

right hand fingers from x axis to
y axis, thumb points along z axis

● Length/magnitude:║u║ = (u
1

2 + u
2
2 + … + u

n
2)½

– From Pythagoras' Theorem

u

y

x

Cartesian/Euclidean n-space ℝn

● Let u = (u
1
, u

2
, ..., u

n
) and v = (v

1
, v

2
, ..., v

n
)

● Addition of vectors:

u + v ≡ (u
1
 + v

1
, u

2
 + v

2
, ..., u

n
 + v

n
)

● Multiplication of vector by scalar:

su ≡ (su
1
, su

2
, ..., su

n
)

Cartesian/Euclidean n-space ℝn

● Dot Product:

u‧v ≡ (u
1
v

1
 + u

2
v

2
 + … + u

n
v
n
)

● Cross Product (remember, 3D only!):

u × v ≡ (u
2
v

3
 – u

3
v

2
, u

3
v

1
 – u

1
v

3
, u

1
v

2
 - u

2
v

1
)

Another Way to Remember the Cross
Product in ℝ3

● Let u = (x
1
, y

1
, z

1
) and v = (x

2
, y

2
, z

2
)

● u × v ≡ (y
1
z

2
 – z

1
y
2
, z

1
x

2
 – x

1
z

2
, x

1
y

2
 - y

1
x

2
)

If u and v are 2D instead, this is the
area of the parallelogram between them

Vectors: the “Mathematical” View
● Vector space: Set of objects (vectors) closed under

● Addition of two vectors
● Multiplication of a vector by a scalar (from field F)

● Necessary properties of vector spaces
● Commutative addition: x + y = y + x

● Associative addition: (x + y) + z = x + (y + z)

● Existence of additive identity 0: x + 0 = 0 + x

– Can show: 0.x = 0 (prove!)

● Existence of additive inverse -x: x + (-x) = 0

– Can show: -x = -1.x (prove!)

Vectors: the “Mathematical” View

● Necessary properties of vector spaces (contd.)
● Associative scalar multiplication: r(sx) = (rs)x

● Distributive scalar sum: (r + s)x = rx + sx

● Distributive scalar multiplication: r(x + y) = rx + ry

● Scalar multiplication identity: 1.x = x

– Note: This says that the identity for multiplication of two
scalars is also the identity for multiplication of a vector by a
scalar

Basis and Dimension
● Linear combination of vectors {u

i
}: ∑c

i
u
i

● {c
i
}: Scalar coefficients

● {u
i
} is linearly independent if no u

i
can be expressed as a

linear combination of the others

● Span of {u
i
}: Set of all linear combinations

● Basis of vector space: (Possibly infinite) set of linearly
independent vectors whose span is the entire space

● Dimension of vector space: Cardinality of basis
● Note: All bases of a given space have same (possibly

infinite) cardinality

Basis

● Let a vector space have basis B = [u
1
, u

2
, ..., u

n
]

● Any vector u can be written as ∑
i = 1...n

u
i
u
i

● Or compactly, (u
1
, u

2
, ..., u

n
)

● These are the coordinates of u in basis B

● Note:
● We've generalized our original notion of coordinates:

they're now relative to the selected basis (axes)
● A point has different coordinates in different bases

Back to ℝn

● Has a basis [û
1
, û

2
, …, û

n
] along coordinate axes

 û
1
 = (1, 0, ..., 0)

 û
2
 = (0, 1, ..., 0)

 ⁝
 û

n
 = (0, 0, ..., 1)

● 2D: x̂, y
● 3D: x̂, y, z

● Any n linearly independent vectors form a basis
● Dot and cross products have same formula in right-

handed orthonormal bases (but not in other bases!)

x̂

y

z

Change of Basis (example in 3D)

● Let [u, v, n] be a basis B for a vector space

● Let coordinates of u, v, n in another basis B
0
 be

u = (u
1
, u

2
, u

3
)

v = (v
1
, v

2
, v

3
)

n = (n
1
, n

2
, n

3
)

● Let coordinates of a in B be (a
1
, a

2
, a

3
)

● Let coordinates of a in B
0
 be (a0

1
, a0

2
, a0

3
)

Change of Basis (example in 3D)

[a1
0

a2
0

a3
0] = [u1 v1 n1

u2 v2 n2

u3 v3 n3
] [a1

a2

a3
]

Change of Basis (example in 3D)

[a1

a2

a3
] = [u1 u2 u3

v1 v2 v3

n1 n2 n3
] [a1

0

a2
0

a3
0]

● If B and B
0
 are orthonormal, inverse of matrix is

its transpose (orthogonal matrix)

(only if bases are orthonormal)

Metric

● Assign non-negative real number d(u, v) to every
pair of vectors u, v

● Interpret as distance between u and v

● Necessary properties of metric
● d(u, v) ≥ 0
● d(u, v) = 0 if and only if u = v

● d(u, v) = d(v, u)
● d(u, v) ≤ d(u, w) + d(w, v) (Triangle Inequality)

ℝn as Metric Space

● Magnitude: L
2
 norm:║u║ = (u

1
2 + u

2
2 + … + u

n
2)½

● Metric d(u, v) defined as ║u – v║

● Other common magnitude functions: L
p
 norms

║u║ = (⎢u
1
⎢p + ⎢u

2
⎢p + … + ⎢u

n
⎢p)1/p

● L
1
 is “Manhattan” norm

● L
∞
 is “max” norm

Inner Product

● Assign scalar 〈u, v〉 ∈ field F to pair of vectors u, v

● F is assumed to be set of real or complex numbers

● Necessary properties of inner product
● 〈u, v〉 = 〈v, u〉 (overline denotes complex conjugate)
● 〈su, v〉 = s〈u, v〉
● 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉

● The dot product is a valid inner product for ℝn

Transformations of Vectors
(Thanks to Pat Hanrahan for this section)

● u' = T(u)

● Why?
● Modeling:

– Create objects in convenient coordinates
– Multiple instances of prototype shape
– Kinematics of linked structures

● Viewing:
– Map between window and device coordinates
– Virtual camera projections: parallel/perspective

● We'll stick to ℝ2 for now

Translation

Scaling

Uniform

Non-uniform

Rotation

(counter-clockwise about origin)

Reflection

Shear

Composing Transformations

R(45) T(1, 1) R(45)

Rotate, then Translate

Composing Transformations

T(1, 1) R(45) T(1, 1)

Translate, then Rotate

Order Matters!

T(1, 1) R(45) R(45) T(1, 1)≠

World Space and Object Space

World (Global) Space

Obje
ct (

Loc
al)

Spa
ce● Transformation maps

from one to the other
● Construct by

composing sequence
of basic transforms
● Remember: Transforms

apply Right‑to‑Left in
our notation!

World Space and Object Space

● Let's look at the
example on the right

● Object → World:
● Rotate by θ (ccw), then

translate by t

● World → Object:
● Translate by -t, then

rotate by -θ

Obje
ct (

Loc
al)

Spa
ce

World (Global) Space

θ

t

Make sure you understand this!

Translation

x' = x + t
x

y' = y + t
y

Scaling (and Reflection)

x' = s
x
x

y' = s
y
y

(Negative scaling
coefficients give
reflection)

CCW Rotation By θ About Origin

x' = x cos θ – y sin θ
y' = x sin θ + y cos θ

Horizontal Shear

x' = x + sy
y' = y

Vertical Shear

x' = x
y' = sx + y

Types of 2D Transformations
● Linear Transforms: T(u + v) = T(u) + T(v)

● Scaling
● Rotation
● Shear
● Reflection

● Affine Transforms: T(u) = L(u) + a, where L is linear and a
is a fixed vector
● Translation

● Other, e.g. perspective projection

● How do we represent these in a common format?

Homogenous Coordinates (2D)
● Point (x, y) → (x, y, 1)

● Direction (x, y) → (x, y, 0)

● For any scalar c, (cx, cy, ch) ≡ (x, y, h)

● To convert back:
● If h is 0: (x, y, 0) → (x, y)

● If h is non-zero: (x, y, h) → (x / h, y / h)

● Note:
● Not 3D vector space, just a new representation for 2D
● Legal/illegal operations for directions & positions

automatically distinguished!

Translation

x' = x + t
x

y' = y + t
y [x 'y '1] = [1 0 t x

0 1 t y
0 0 1] [xy1]

Scaling (and Reflection)

x' = s
x
x

y' = s
y
y [x 'y '1] = [sx 0 0

0 s y 0
0 0 1] [xy1]

CCW Rotation By θ About Origin

x' = x cos θ – y sin θ
y' = x sin θ + y cos θ [x 'y '1]=[cos −sin  0

sin  cos 0
0 0 1][xy1]

Horizontal Shear

x' = x + sy
y' = y [x 'y '1] = [1 s 0

0 1 0
0 0 1] [xy1]

Vertical Shear

x' = x
y' = sx + y [x 'y '1] = [1 0 0

s 1 0
0 0 1] [xy1]

What about 3D?

● Very similar: (x, y, z) → (x, y, z, h)

● Look up the formulæ!
● Rotation is a mess

● Common method:
– Map axis of rotation to a coordinate axis (similar to change

of basis)
– Rotate around the coordinate axis
– Map back

● Other approaches based on Euler angles and
quaternions

Why Use Matrices?

● Compute the matrix once
 x' = x cos θ – y sin θ
 y' = x sin θ + y cos θ

● Don't repeatedly evaluate sines and cosines

● Combine sequence of transforms into a single
transform
● Store M = ABCD, apply M(u) instead of A(B(C(D(u))))

● The inverse of a sequence of transforms is just the
matrix inverse
● (ABCD)-1 = D-1C-1B-1A-1 = M-1

Hierarchical Modeling
● Graphics systems maintain a current transformation matrix

(CTM)
● All geometry is transformed by the CTM
● CTM defines object space in which geometry is specified
● Transformation commands are concatenated onto the CTM.

The last one added is applied first:
– CTM = CTM * T

● Graphics systems also maintain a transformation stack
● The CTM can be pushed onto the stack
● The CTM can be restored from the stack

Example: Articulated Robot

x

y

0

1.5 1.5

5

2

22

2

2 2

3 3

1.5 1.5

body
 torso
 head
 shoulder
 leftArm
 upperArm
 lowerArm
 hand
 rightArm
 upperArm
 lowerArm
 hand
 hips
 leftLeg
 upperLeg
 lowerLeg
 foot
 rightLeg
 upperLeg
 lowerLeg
 foot

Example: Articulated Robot

x

y

0

1.5 1.5

5

2

22

2

2 2

3 3

1.5 1.5

translate(0, 5, 0);
torso();
pushMatrix();
translate(0, 5, 0);
 shoulder();
 pushMatrix();
 rotateY(neck_y);
 rotateX(neck_x);
 head();
 popMatrix();
 pushMatrix();
 translate(1.5, 0, 0);
 rotateX(l_shoulder_x);
 upperArm();
 pushMatrix();
 translate(0,-2,0);
 rotateX(l_elbow_x);
 lowerArm();
 …
 popMatrix();
 popMatrix();
 …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

