Rendering - |

CS5475 / 675, Fall 2016

Siddhartha Chaudhuri

?

Fake or Foto

(0)04J0a>je)/WO0DMSapoIne-eale//:d1yy e 3uajleyd ayl aje|)

Fake or Foto?

(03044033 e4/W0DMSapoIneeale//:di3y 1e adusjeyd ayl aje])
ul|4931aNg sealpuy

]

= i

vy

(0)04J0a>je)/WO0DMSapoIne-eale//:d1yy e 3uajleyd ayl aje|)

Fake or Foto?

(030J403>e}/WO0DMSapoIne-eale//:d13y 3e a3udjjeyd ayl Mje|)
puelanng sewoy |

?

Fake or Foto

(030J403>e}/WO0DMSapoIne-eale//:di3y 3e a8udjieyd ayl aje|)

(030J403>e}/WO0DMSapoIne-eale//:di3y 3e a8udjieyd ayl aje|)

Fake or Foto?

-

(0304J0>je)/WO0D MSsapoIne-eale//:diyy je 3uajieyd ayl e)

ssor) AJUSH
T S
b .
_ ______E. ¥

_ [o _ .
N . | 1 Al
= 7 h 0
3
1R

Fake or Foto?

I HITTTT T T 1 o2

Wz

e

Sommerhaus PIU, Patrick Frey

(Take the challenge at http://area.autodesk.com/fakeorfoto)

Fake or Foto?

(030J403>e}/WO0DMSapoIne-eale//:di3y 3e a8udjieyd ayl aje|)

Fake or Foto?

(03044033 e4/W0D MSapoIneeale//:di3y 1e adusjeyd ayl aje])

y

~ . L
" - RN
_..JMA__m_

Fake or Foto?

//area.autodesk.com/fakeorfoto)

(Take the challenge at http

Fake or Foto?

(03044033 e4/W0DMSapoIneeale//:di3y 1e adusjeyd ayl aje])
Ayleoy ue(q

Fake or Foto?

(03044033 e4/W0DMSapoIneeale//:di3y 1e adusjeyd ayl aje])
Ayleoy ue(q

Fake

or Foto?

(Take the challenge at http://area.autodesk.com/fakeorfoto)

Fake or Foto?

(03044033 e4/W0D MSapoIneeale//:di3y 1e adusjeyd ayl aje])
unjesq 1ep

Fake or Foto?

(YHWS [ned [RY2I|A)

(YHWS ned [RY2IA)

Outline

* Modeling a camera
* Tracking light

* Simulating surface appearance

Perspective

=
: ay
-

o fald

L e e Sy

JAN VREDEMAN DE VRIES, Perspective (Leiden, 1604-5), plate 28. Courtesy, the
Bancroft Library, Berkeley, California.

Creating the lllusion of Depth

Pietro Perugino, Sistine Chapel, Vatican City

Creating the lllusion of Depth

Andrea Pozzo, Chiesa di Sant'lgnazio, Rome

(Anthony Majanlahti)

Creating the lllusion of Depth

Andrea Pozzo, Jesuitenkirche, Vienna

(Alberto Fernandez Fernandez)

Compensating for Perspective

Higher letters are bigger, to

appear the same size from the ground (Taj Mahal, Agra)

(http://tylapens.blogspot.com)

h Perspective

It

Tricks w

Ascending and Descending”, M. C. Escher

“

Tricks with Perspective

The Ames Room

Tricks with Perspective

Ames Room, “The Mind's Eye”, BBC

The Ames Room

Actual position of
FPerson A —— |

e s

Apparent position

of persona — oo \\ Actual and

ot apparent position
v of person B

/P B\
Apparent Viewng

shape of room pesphole

Wikipedia, Conway Psychology

Recall: Pinhole Camera Model

Light-tight box

Pinhole i /

Light rays
\A

______ 0
S

Inverted
Image
on screen

Perspective Camera for Graphics

Light rays

y
I
"
-

Eye

Identical to pinhole camera except image plane
Is In front of eye, so image is not flipped

Where Does the Light Come From?
\

N~ -
Light source
\

Reflected rays

Viewing/image plane

One Way to Render a Scene

 Track rays of light as they leave the (virtual) light
source, bounce around the (virtual) scene and
finally enter the (virtual) eye

e Very inefficient!

* Most rays don't enter the eye

e (This is called forward raytracing, btw)

Observation

Path of light i1s reversible

A Better Way

e Track light backwards from the eye to the light
source

* One path per image plane point

e This is called backwards raytracing N

S Q -
Reﬂecto/

Translucent

Problem: Diffuse Surfaces

* |f objects are not perfect reflectors, many incident
rays contribute to a single reflected direction

* So we have to go backwards along a whole range of
directions after we hit the first object - inefficient!

\
g Light can

take any of
these paths
(and more)

But there is hope...

e Most of the time, It's possible to approximate
surface appearance without waiting for the
backwards path to hit a light source

» Stop after only a few bounces
* We'll decouple the light tracking

e Assume every object behaves

— partly as a perfect mirror
— partly as a transparent medium (without scattering)

— partly as a diffuse reflector

The Perfect Reflector Component

* Trace a single ray backwards, reflecting it
whenever It intersects a surface

» Going forward, we lose light with each reflection

» Going backward, we accumulate light

e 9

44

Recursive Raytracing Loop - ver. |

function traceRay(ray) returns Color

(obj, intersection) = getFirstintersection(ray)

If obj Is a light source
return getLightColor(ob))

else
reflected ray = getReflectedRay(ray, intersection)
reflectance = getSurfaceReflectance(obi, intersection)
return reflectance * traceRay(reflected ray)

end if
end function

Note: Ray has origin and direction

Finding the Reflected Ray

Incident ray Reflected ray
ii Unit normal u-(2a-n)n

A

n
A

The Transparent Component

 Whenever the backwards ray hits a surface, also
trace a “refracted” ray through the object

 Now we have two rays, reflected and refracted, for
each backwards ray

e Exponential growth in number of paths, so we can't
trace back too far

Reflected Ray

Refracted Ray

44

Recursive Raytracing Loop - ver. 2

function traceRay(ray) returns Color
(obj, intersection) = getFirstintersection(ray)
If obj Is a light source
return getLightColor(ob))
else
reflected ray = getReflectedRay(ray, intersection)
reflectance = getSurfaceReflectance(obi, intersection)

refracted ray = getRefractedRay(ray, intersection)
transmittance = getSurface Iransmittance(obj, intersection)

return reflectance * traceRay(reflected ray)
+ transmittance * traceRay(refracted ray)

end If
end function

Finding the Refracted Ray (Snell's Law)

A n
A

Refracted ray

mﬁ+(mcos€)1—cosE)Z)ﬁ
Ny P

2

n,

n,

cos0,=—tu-il, cos 62:\/1—sin292, sin”0,= (1—cos’0,)

The Diffuse Component

 Commonly broken down [Phong 1973] into:

e Lambertian .
— Dcesn't depend on viewing direction

* Approximately Specular (shiny) .
— Depends on viewing direction

 Ambient: Light that has bounced around so much it
uniformly lights the scene even In the darkest corners

— prevents shadows from appearing completely black

Putting It All Together

Ambient Lambertian (Approx.) Specular

(Wikipedia)

Caution!

 The Lambertian component is often called the
“diffuse” component when the context is clear

* Hence this shading model is often called Ambient-
Diffuse-Specular (ADS)

e ... although “diffuse” here means Lambertian

e ... and “specular” means approximately specular

— (a perfectly specular object is a mirror)

Lambertian Shading

* Intuition: Slanted illumination = dimmer, all
directions receive same reflected light

* Modeled via falloff function \Q ~
I, = Lygphy €08 0 = Loy (- 1)

where 1 Is unit vector from
point to light source

e Independent of viewing
direction

(Approximately) Specular Shading

* Intuition: More light is reflected along directions
close to the “perfect” reflected ray

\ 4
~ -
Iy = Iy kg (coS)’ = light Xs (b - F)” Q

where t Is i1deal
reflection direction

* Depends on viewing
direction

o (aka “Phong highlights”)

(Approximately) Specular Shading

* The specular exponent ¢ controls the size of the
highlight

XX

Increasing o

Simplification: The Blinn-Phong Model

* Replace —i - # with i - h

e his the “halfway vector” \

A

1—u

li—al

e Looks very like the
original Phong highlight

* No need to compute f

Ambient Shading

« Constant value k, [added to reflected light

A Tambient

e Uniform over an object, not directly defined In
terms of light sources

Low ambient term High ambient term

Let's look at it all again...

Ambient Lambertian (Approx.) Specular

(Wikipedia)

Material

e An object's “material” can be described with its
ambient, lambertian and specular ccefficients

(ky, ki, kg, 0)

e In a color space, k,, k; and kg are defined
separately for each primary

¢ C.g. kL — (kLred’ kLgreen, kLblue)

Only an Approximation!

* The Ambient-Lambertian-Specular (“Phong”)
reflection model i1s an empirical model that
approximates real world materials

» The bidirectional reflectance distribution function
(BRDF) tells us how light is actually reflected in
various directions

e |t can be measured In a real-world
setup using a goniophotometer

» Sophisticated renderers use BRDFs

(STIL S.A))

Extending BRDFs

Without With
subsurface scattering subsurface scattering

Jensen, Marschner, Levoy and Hanrahan, 2001

Recursive Raytracing Loop - ver. 3

function traceRay(ray) returns Color
(obj, intersection) = getFirstintersection(ray)
if obj is a light source
return getLightColor(obj)
else
diffuse_color = getDiffuseShading(obj, intersection) // ADS/BRDF/radiosity/...

reflected ray = getReflectedRay(ray, intersection)
reflectance = getSurfaceReflectance(obj, intersection)

refracted ray = getRefractedRay(ray, intersection)
transmittance = getSurface Transmittance(obj, intersection)

return combine(diffuse color,
reflectance * traceRay(reflected ray),
transmittance * traceRay(refracted ray))
end if

end function

Raytraced Image

Rendered in POV-Ray by Gilles Tran

Computing Intersections

 We must evaluate which object is hit first by a ray,
and where

e Usually:

e Represent surface by equation
o Substitute formula of ray

» Solve for intersection point

Let's see an example...

» Sphere has equation ‘ pP— c“2 = r

e ¢ Is center and r iIs radius

A point on the ray can be written as p, + fu
e u s direction and p, Is origin of ray

e Substituting: ‘po +fu—c H 2=y

* This is a quadratic equation in ¢ (expand it!) which
can be solved for ¢

 Note: The parametric form of the ray implies that the
closest surface i1s the one with the smallest positive ¢

Efficiency Concerns

» Expensive to test If ray intersects every object In
the scene

* Some speedup with bounding volumes

* Simple object (e.g. sphere/cube)
enclosing a complex shape

o Test for intersection with
bounding volume first

 If ray doesn't hit bounding
volume, It dcesn't hit object either

Efficiency Concerns

* Huge speedup with space subdivision methods

e Hierarchy of bounding volumes

e Qctree
e kD-Tree

e General idea:

 Hierarchically partition space (root encloses all objects)

* Traverse hierarchy top-down

— Consider a subtree only if its root cell is intersected

Example: Octree

Shadows

 When computing diffuse shading, we assumed the
surface was directly visible from the light source

 |f some other object blocks the path, we must
ignore this component

e TJo test this:

» Create a ray from the surface point to the light source
» Check if the ray hits anything before the light

e Can reuse Intersection code!

Fun Things to Try

* Learn POV-Ray: http://www.povray.org

» Open-source raytracer
e Set up your scene and lighting with a script

* See their Hall of Fame! http://hof.povray.org

* Find out more about “trompe-I'ceil”

e Think about the different ways in which the
lighting model we described falls short of reality

http://www.povray.org/
http://hof.povray.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

