

Rendering - II

CS475 / 675, Fall 2016

Siddhartha Chaudhuri

Today

Real-time graphics with OpenGL

Crysis (Crytek/EA, 2007)

Hidden Surface Removal
Near objects hide (occlude) further objects

Elliott Erwitt, New York, 2000

Hidden Surface Removal
● Color at a rendered pixel

depends primarily on the
nearest object at that
point

● Naïve solution: Sort and
render objects back to
front (painter's algorithm)
● Inefficient
● Not as easy as it sounds!

– Is the man behind the wall
or the wall behind the man?

André Kertész, “Arm and Ventilator”,
New York, 1937

Better Solutions
● Raycasting/Raytracing: Trace a ray through the pixel,

see which object is hit first
● Z-Buffer

● Draw objects one-by-one in any order
● At each pixel, store closest depth value seen so far

– Z axis is usually assumed to lie along the depth direction,
hence this image of depth values is called the z-buffer

● At pixel p, let an object have color c and depth d
– If d < old depth at p

● new depth at p = d
● new color at p = c

Z-Buffer: Example

Rendered 3D scene

(Wikipedia)

Z-Buffer: Example

Corresponding z-buffer (dark: near, light: far)

(Wikipedia)

Isn't raycasting simpler?
● Z-buffer algorithms have traditionally been easy to accelerate

in hardware
● No need for complicated data structures
● Parallelizable in object space: Every object is drawn (nearly)

independently of the others
– Useful when scene can be divided into lots of small components, e.g.

triangles

● But raytracing can be accelerated too!
● Requires more sophisticated hardware
● Different parallelization characteristics

– Often better than z-buffers when there's lots of occlusion

● Gaining popularity in recent times

Limitations of Z-Buffers

● Hard to do
● reflections
● refractions
● shadows

● In fact, the only thing that's easy to do is diffuse shading
(ADS/Phong) with direct lighting
● This was good enough for most games for a long time
● 99.99% of all 3D games use z-buffers, accelerated to

ridiculous speeds by graphics processing units (GPUs)

Standard Z-Buffer Based APIs

● Direct3D
● Windows-only
● http://www.microsoft.com/directx

● OpenGL
● Windows, OS X, Linux, …

– … which is why we'll look only at OpenGL in this course
● http://www.opengl.org

http://www.microsoft.com/directx
http://www.opengl.org/

Basic OpenGL

● Represent object surface as set of primitive shapes
– Points
– Lines
– Triangles
– Quad(rilateral)s

● This process is called tessellation

● Draw primitives one by one
● Batched and parallelized in hardware

● Let the z-buffer figure out which primitive
determines the color at each pixel

Tessellating a Sphere with Triangles

(Z
iy

an
 Z

ho
u)

A Tessellated Teapot

Tessellated Animals

(A
ge

 o
f

Em
pi

re
s,

 M
ic

ro
so

ft
)

Tessellated Terrain

(TFPSoft)

Tessellation
● Difficult to get right

● Primitives must be evenly distributed
● Primitives must not have awkward shapes (e.g. very

“skinny” triangles)
● This is important not just for display but even more so

for physics simulation/finite element methods

● Many sophisticated algorithms exist
● Often take equations of curved patches as input
● We won't cover them in this course
● In assignments we'll work with pre-tessellated models

Drawing Triangles in OpenGL

glBegin(GL_TRIANGLES);
 foreach triangle in object
 {
 // Tell OpenGL the normal and color of the triangle
 // Send the 3 vertex positions
 }
glEnd();

Note:

● Every collection of primitives must be placed between a glBegin/glEnd block

● Every three successive vertices in the block defines a triangle

● Instead of GL_TRIANGLES we could use GL_POINTS (every vertex is a point),
GL_LINES (every 2 vertices defines a line), GL_QUADS (every 4 vertices defines a
quad) etc.

Drawing Triangles in OpenGL
glBegin(GL_TRIANGLES);
 foreach triangle in object
 {
 glNormal3f(0.58f, 0.58f, 0.58f); // (nx, ny, nz)
 glColor3f(1.0f, 0.0f, 0.0f); // (R = 1, G = 0, B = 0)

 glVertex3f(1.0f, 0.0f, 0.0f); // (x, y, z)
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 1.0f);
 }
glEnd();

Note:

● We set the normal and color per triangle (they can actually be set anywhere,
anytime, and apply to all subsequent vertices)

● We set the positions per vertex

What's this …3f business?
● glVertex has variants glVertex3f, glVertex3d

● The first takes 3 float arguments (x, y, z)

● The second takes 3 double arguments
● OpenGL also has functions with a …3i suffix – these obviously

take 3 integers

● There's also glVertex2f
● z is assumed to be 0

● … and glVertex4f
● Last argument is homogenous coordinate h, which is otherwise

assumed to be 1
● Similarly glColor4f is used to specify (R, G, B, α)

Transforming Objects
● Let's see a simple example first…

 glLoadMatrixf(M); // M is a 4x4 matrix stored in column-major form

 // Draw the object using glBegin/glEnd

● Note:
● The object is transformed by M before it is drawn

– Each vertex v becomes M * v

● M is column-major!
– Array of 16 numbers: first column, then second column, …

● M is column-major!!
● Did we mention M is column-major?!!

Composing Transformations
● Just specify the matrices to be composed one

after the other
 glLoadMatrixf(A); // Initial matrix
 glMultMatrixf(B); // Note: MultMatrix, not LoadMatrix
 glMultMatrixf(C);
 …

 // Draw the object using glBegin/glEnd

● The object is transformed by A * B * C

● Each vertex v becomes A * B * C * v

● Note: Transforms are applied last-to-first!

OpenGL Convenience Functions
● glLoadIdentity() ≡ glLoadMatrixf(<identity matrix>)

● glTranslatef(tx, ty, tz) ≡ glMultMatrixf(T)

● T is a matrix that translates by (tX, tY, tZ)

● glRotatef(angle, x, y, z) ≡ glMultMatrixf(R)
● R is a matrix that rotates by angle degrees around the axis

(x, y, z)

● glScalef(sx, sy, sz) ≡ glMultMatrixf(S)

● S is a matrix that scales by sX along x, sY along y and sZ
along z

● (All the functions have …d versions, of course)

Transforming Objects

● A more complicated example:

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
 glMultMatrixf(M);

 // Draw the object using glBegin/glEnd

glPopMatrix();

● Questions:
● Why all the pushing/popping?
● What's with this MatrixMode business?

Hierarchical Modeling
● Graphics systems maintain a current transformation matrix

(CTM)
● All geometry is transformed by the CTM
● CTM defines object space in which geometry is specified
● Transformation commands are concatenated onto the CTM

(glMultMatrix). The last one added is applied first:
– CTM = CTM * T

● The CTM is reset with glLoadMatrix
● Graphics systems also maintain transformation stack

● The CTM can be pushed onto the stack (glPushMatrix)
● The CTM can be restored from the stack (glPopMatrix)

Example: Articulated Robot

x

y

0

1.5 1.5

5

2

22

2

2 2

3 3

1.5 1.5

body
 torso
 head
 shoulder
 leftArm
 upperArm
 lowerArm
 hand
 rightArm
 upperArm
 lowerArm
 hand
 hips
 leftLeg
 upperLeg
 lowerLeg
 foot
 rightLeg
 upperLeg
 lowerLeg
 foot

Example: Articulated Robot (OpenGL)

x

y

0

1.5 1.5

5

2

22

2

2 2

3 3

1.5 1.5

glTranslatef(0, 1.5, 0);
drawTorso();
glPushMatrix();
glTranslatef(0, 5, 0);
 drawShoulder();
 glPushMatrix();
 glRotatef(neck_y, 0, 1, 0);
 glRotatef(neck_x, 1, 0, 0);
 drawHead();
 glPopMatrix();
 glPushMatrix();
 glTranslatef(1.5, 0, 0);
 glRotatef(l_shoulder_x);
 drawUpperArm();
 glPushMatrix();
 glTranslatef(0,-2,0);
 glRotatef(l_elbow_x, 1, 0, 0);
 drawLowerArm();
 …
 glPopMatrix();
 glPopMatrix();
 …

Recap

● Z-buffer to detect visible surfaces
● Surfaces tessellated into simple primitives
● Draw primitives with glBegin/glEnd blocks

● glVertex, glNormal, glColor

● Nested transform blocks
● glPushMatrix, glPopMatrix, glLoadMatrix, glMultMatrix

(We'll address the glMatrixMode business a little later)

Drawing Triangles

● Problem: Given triangle Δ, color the pixels that it
covers

● This is called rasterization

● Two-step solution:
● Project the triangle to screen space
● Compute the pixels covered by the projection

OpenGL Pixel Coordinates

Increasing X

In
cr

ea
si

ng
 Y

(0, 0)

(0, 1)

(0, 0)

(1, 1)

(1, 0)

The pixel grid is called the framebuffer

OpenGL Pixel Coordinates

Increasing X

In
cr

ea
si

ng
 Y

(0.5, 0.5)

(0.5, 1.5)

(1.5, 0.5)

(1.5, 1.5)

Pixel centers are at half-integer coordinates

Rasterization Rules: Area Primitives

Increasing X

In
cr

ea
si

ng
 Y

Output fragment if pixel center is inside area

Rasterization Rules: Area Primitives

Increasing X

In
cr

ea
si

ng
 Y

Combine fragment color with existing pixel color

What do we mean by “combine”?

● Typically, we test the fragment depth against the z-
buffer and replace the existing pixel if the
fragment is closer

● For specific effects, we can:
● Use other tests
● Blend the fragment color with the existing color

instead of replacing it
– E.g. when combined with back-to-front rendering, can

approximate transparency
● We need to be very careful when doing this in parallel!

Rasterization Rules: Line Primitives

Increasing X

In
cr

ea
si

ng
 Y

Output fragment if line intersects “diamond”

Specifying the Viewport

● Viewport: Active section of framebuffer
● glViewport(int x, int y, int width, int height)

● Initially set to entire
framebuffer

Framebuffer

Viewport
(x, y)

Lower left corner
(in pixels)

Viewport size
(in pixels)

Normalized Device Coordinates

● Maps viewport to [-1, 1]2

● Allows us to use a consistent set of coordinates
for projection

● OpenGL handles the mapping from NDC to pixel
coordinates

Viewport

(-1, -1)

(-1, 1) (1, 1)

(1, -1)

View Volume
Visible part of scene, typically frustum of a pyramid

Mapped to [-1, 1]3 in
normalized device
coordinates

(everything outside
is discarded)

(-1, -1, 1)

(-1, 1, 1)

(1, 1, 1)

(1, -1, 1)

Viewport

View volume

(-1, -1, -1)

(-1, 1, -1)
(1, 1, -1)

(1, -1, -1)

Near clipping plane

Far clipping plane

Projective Transformation

● Maps view volume to [-1, 1]3 (NDC)
● Viewer is assumed to be looking along –Z

● Consistent with XY coordinates for viewport

Z

Y

X

Increasing depth

Orthographic (Parallel) Projection

● Viewer at infinity
● Object appears same size regardless of distance
● View volume assumed to have bounding planes

x = l ≡ left plane

x = r ≡ right plane

y = b ≡ bottom plane

y = t ≡ top plane

z = n ≡ near plane

z = f ≡ far plane

(l, b, n)

(r, t, f)

Z

Y

X

Orthographic Projection Matrix

[
2
r−l

0 0 − r+l
r−l

0
2

t−b
0 − t+b

t−b

0 0
2

n− f
− n+ f

n− f
0 0 0 1

]
● Maps [l, r] × [b, t] × [f, n] to [-1, 1]3

● Since n and f are negative, n > f

Perspective Projection

● Objects further away appear smaller
● Rays converge at eye, assumed to be at origin
● (l, r, b, t) now specify boundaries of view volume

at near clipping plane

(l, b, n)

(r, t, n)

Z

Y

X

(0, 0, 0)

Perspective Projection Matrix

[
2n

r−l
0

l+r
l−r

0

0
2 n

t−b
b+t
b−t

0

0 0
f +n

n− f
2 f n
f −n

0 0 1 0
]

● We finally use that homogenous coordinate!
● Remember to divide by h to get the final point

Camera Transformation

● The last missing piece is to align the camera with
the direction of view

● Camera orientation is specified (in world
coordinates) by:
● the eye position e
● the gaze direction g
● the view-up vector t
● (neither g nor t need be

unit, and t need not even
be exactly perpendicular to g)

t

g

e

Camera Transformation

● We construct an orthonormal basis [u ̂, v ̂, w ̂] from
g, t

w ̂ = –g / ║g║
u ̂ = (t × w)̂ / ║t × w ̂║
v ̂ = w ̂ × u ̂

● u ̂ is the target X axis,
v ̂ the target Y axis, and
w ̂ the target Z axis

v ̂

g

e

w ̂ u ̂

t

Camera Transformation Matrix

[u x u y u z 0
v x v y v z 0
wx w y wz 0
0 0 0 1

] [1 0 0 −e x

0 1 0 −e y

0 0 1 −e z

0 0 0 1
]

Change of basis to
uvw coordinates

Translate eye to origin

*

The Full Transformation Pipeline

Every object is transformed by

T = Projection * Camera * Model

Back to that glMatrixMode thing...

● OpenGL maintains multiple current transformation
matrices, and corresponding stacks

● The important ones (for us) are:
● the Model-View Matrix M, and
● the Projection Matrix P

● The full transformation applied to an object is actually P *
M (in that order, right-to-left)

● By convention, the projective transform
(perspective/orthographic) is put in P, and everything else
(camera, model, …) in M

OpenGL Matrix Modes

● To select the projection matrix (and stack):

glMatrixMode(GL_PROJECTION);

● To select the model-view matrix (and stack):

glMatrixMode(GL_MODELVIEW);

The Full Transform Once Again…

Every object is transformed by

T = Projection * Camera * Model

GL_PROJECTION GL_MODELVIEW

Recap
● Z-buffer to detect visible surfaces

● Surfaces tessellated into simple primitives

● Draw primitives with glBegin/glEnd blocks
● glVertex, glNormal, glColor
● Primitives are rasterized to framebuffer

● Nested transform blocks
● glPushMatrix, glPopMatrix, glLoadMatrix, glMultMatrix

● Projection * Camera * Model transform applied to each
object

● Perspective/orthographic projection, camera (uvw) coordinates,
GL_PROJECTION, GL_MODELVIEW

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

