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Today

Real-time graphics with OpenGL



  

Crysis (Crytek/EA, 2007)



  

Hidden Surface Removal
Near objects hide (occlude) further objects

Elliott Erwitt, New York, 2000



  

Hidden Surface Removal
● Color at a rendered pixel

depends primarily on the
nearest object at that
point

● Naïve solution: Sort and
render objects back to
front (painter's algorithm)
● Inefficient
● Not as easy as it sounds!

– Is the man behind the wall
or the wall behind the man?

André Kertész, “Arm and Ventilator”,
New York, 1937



  

Better Solutions
● Raycasting/Raytracing: Trace a ray through the pixel,

see which object is hit first
● Z-Buffer

● Draw objects one-by-one in any order
● At each pixel, store closest depth value seen so far

– Z axis is usually assumed to lie along the depth direction,
hence this image of depth values is called the z-buffer

● At pixel p, let an object have color c and depth d
– If d < old depth at p

● new depth at p = d
● new color at p = c



  

Z-Buffer: Example

Rendered 3D scene

(Wikipedia)



  

Z-Buffer: Example

Corresponding z-buffer (dark: near, light: far)

(Wikipedia)



  

Isn't raycasting simpler?
● Z-buffer algorithms have traditionally been easy to accelerate

in hardware
● No need for complicated data structures
● Parallelizable in object space: Every object is drawn (nearly)

independently of the others
– Useful when scene can be divided into lots of small components, e.g.

triangles

● But raytracing can be accelerated too!
● Requires more sophisticated hardware
● Different parallelization characteristics

– Often better than z-buffers when there's lots of occlusion

● Gaining popularity in recent times



  

Limitations of Z-Buffers

● Hard to do
● reflections
● refractions
● shadows

● In fact, the only thing that's easy to do is diffuse shading
(ADS/Phong) with direct lighting
● This was good enough for most games for a long time
● 99.99% of all 3D games use z-buffers, accelerated to

ridiculous speeds by graphics processing units (GPUs)



  

Standard Z-Buffer Based APIs

● Direct3D
● Windows-only
● http://www.microsoft.com/directx

● OpenGL
● Windows, OS X, Linux, …

– … which is why we'll look only at OpenGL in this course
● http://www.opengl.org

http://www.microsoft.com/directx
http://www.opengl.org/


  

Basic OpenGL

● Represent object surface as set of primitive shapes
– Points
– Lines
– Triangles
– Quad(rilateral)s

● This process is called tessellation

● Draw primitives one by one
● Batched and parallelized in hardware

● Let the z-buffer figure out which primitive
determines the color at each pixel



  

Tessellating a Sphere with Triangles
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A Tessellated Teapot



  

Tessellated Animals
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Tessellated Terrain

(TFPSoft)



  

Tessellation
● Difficult to get right

● Primitives must be evenly distributed
● Primitives must not have awkward shapes (e.g. very

“skinny” triangles)
● This is important not just for display but even more so

for physics simulation/finite element methods

● Many sophisticated algorithms exist
● Often take equations of curved patches as input
● We won't cover them in this course
● In assignments we'll work with pre-tessellated models



  

Drawing Triangles in OpenGL

glBegin(GL_TRIANGLES);
    foreach triangle in object
    {
        // Tell OpenGL the normal and color of the triangle
        // Send the 3 vertex positions
    }
glEnd();

Note:

● Every collection of primitives must be placed between a glBegin/glEnd block

● Every three successive vertices in the block defines a triangle

● Instead of GL_TRIANGLES we could use GL_POINTS (every vertex is a point),
GL_LINES (every 2 vertices defines a line), GL_QUADS (every 4 vertices defines a
quad) etc.



  

Drawing Triangles in OpenGL
glBegin(GL_TRIANGLES);
    foreach triangle in object
    {
        glNormal3f(0.58f, 0.58f, 0.58f); // (nx, ny, nz)
        glColor3f(1.0f, 0.0f, 0.0f); // (R = 1, G = 0, B = 0)

        glVertex3f(1.0f, 0.0f, 0.0f); // (x, y, z)
        glVertex3f(0.0f, 1.0f, 0.0f);
        glVertex3f(0.0f, 0.0f, 1.0f);
    }
glEnd();

Note:

● We set the normal and color per triangle (they can actually be set anywhere,
anytime, and apply to all subsequent vertices)

● We set the positions per vertex



  

What's this …3f business?
● glVertex has variants glVertex3f, glVertex3d

● The first takes 3 float arguments (x, y, z)

● The second takes 3 double arguments
● OpenGL also has functions with a …3i suffix – these obviously

take 3 integers

● There's also glVertex2f
● z is assumed to be 0

● … and glVertex4f
● Last argument is homogenous coordinate h, which is otherwise

assumed to be 1
● Similarly glColor4f is used to specify (R, G, B, α)



  

Transforming Objects
● Let's see a simple example first…

    glLoadMatrixf(M); // M is a 4x4 matrix stored in column-major form

    // Draw the object using glBegin/glEnd

● Note:
● The object is transformed by M before it is drawn

– Each vertex v becomes M * v

● M is column-major!
– Array of 16 numbers: first column, then second column, … 

● M is column-major!!
● Did we mention M is column-major?!!



  

Composing Transformations
● Just specify the matrices to be composed one

after the other
    glLoadMatrixf(A); // Initial matrix
    glMultMatrixf(B); // Note: MultMatrix, not LoadMatrix
    glMultMatrixf(C);
    …

    // Draw the object using glBegin/glEnd

● The object is transformed by A * B * C

● Each vertex v becomes A * B * C * v

● Note: Transforms are applied last-to-first!



  

OpenGL Convenience Functions
● glLoadIdentity() ≡ glLoadMatrixf(<identity matrix>)

● glTranslatef(tx, ty, tz) ≡ glMultMatrixf(T)

● T is a matrix that translates by (tX, tY, tZ)

● glRotatef(angle, x, y, z) ≡ glMultMatrixf(R)
● R is a matrix that rotates by angle degrees around the axis

(x, y, z)

● glScalef(sx, sy, sz) ≡ glMultMatrixf(S)

● S is a matrix that scales by sX along x, sY along y and sZ 
along z

● (All the functions have …d versions, of course)



  

Transforming Objects

● A more complicated example:

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
    glMultMatrixf(M);

    // Draw the object using glBegin/glEnd

glPopMatrix();

● Questions:
● Why all the pushing/popping?
● What's with this MatrixMode business?



  

Hierarchical Modeling
● Graphics systems maintain a current transformation matrix 

(CTM)
● All geometry is transformed by the CTM
● CTM defines object space in which geometry is specified
● Transformation commands are concatenated onto the CTM

(glMultMatrix). The last one added is applied first:
– CTM = CTM * T

● The CTM is reset with glLoadMatrix
● Graphics systems also maintain transformation stack

● The CTM can be pushed onto the stack (glPushMatrix)
● The CTM can be restored from the stack (glPopMatrix)



  

Example: Articulated Robot
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3 3
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body
        torso
                head
                shoulder
                        leftArm
                                upperArm
                                lowerArm
                                hand
                        rightArm
                                upperArm
                                lowerArm
                                hand
                hips
                        leftLeg
                                upperLeg
                                lowerLeg
                                foot
                        rightLeg
                                upperLeg
                                lowerLeg
                                foot



  

Example: Articulated Robot (OpenGL)
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glTranslatef(0, 1.5, 0);
drawTorso();
glPushMatrix();
glTranslatef(0, 5, 0);
        drawShoulder();
        glPushMatrix();
                glRotatef(neck_y, 0, 1, 0);
                glRotatef(neck_x, 1, 0, 0);
                drawHead();
        glPopMatrix();
        glPushMatrix();
                glTranslatef(1.5, 0, 0);
                glRotatef(l_shoulder_x);
                drawUpperArm();
                glPushMatrix();
                        glTranslatef(0,-2,0);
                        glRotatef(l_elbow_x, 1, 0, 0);
                        drawLowerArm();
                        …
                glPopMatrix();
        glPopMatrix();
        …



  

Recap

● Z-buffer to detect visible surfaces
● Surfaces tessellated into simple primitives
● Draw primitives with glBegin/glEnd blocks

● glVertex, glNormal, glColor

● Nested transform blocks
● glPushMatrix, glPopMatrix, glLoadMatrix, glMultMatrix

(We'll address the glMatrixMode business a little later)



  

Drawing Triangles

● Problem: Given triangle Δ, color the pixels that it
covers

● This is called rasterization

● Two-step solution:
● Project the triangle to screen space
● Compute the pixels covered by the projection



  

OpenGL Pixel Coordinates
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 Y

(0, 0)

(0, 1)

(0, 0)

(1, 1)

(1, 0)

The pixel grid is called the framebuffer



  

OpenGL Pixel Coordinates

Increasing X

In
cr

ea
si

ng
 Y

(0.5, 0.5)

(0.5, 1.5)

(1.5, 0.5)

(1.5, 1.5)

Pixel centers are at half-integer coordinates



  

Rasterization Rules: Area Primitives

Increasing X

In
cr

ea
si

ng
 Y

Output fragment if pixel center is inside area



  

Rasterization Rules: Area Primitives

Increasing X

In
cr

ea
si

ng
 Y

Combine fragment color with existing pixel color



  

What do we mean by “combine”?

● Typically, we test the fragment depth against the z-
buffer and replace the existing pixel if the
fragment is closer

● For specific effects, we can:
● Use other tests
● Blend the fragment color with the existing color

instead of replacing it
– E.g. when combined with back-to-front rendering, can

approximate transparency
● We need to be very careful when doing this in parallel!



  

Rasterization Rules: Line Primitives

Increasing X

In
cr

ea
si

ng
 Y

Output fragment if line intersects “diamond”



  

Specifying the Viewport

● Viewport: Active section of framebuffer
● glViewport(int x, int y, int width, int height)

● Initially set to entire
framebuffer

Framebuffer

Viewport
(x, y)

Lower left corner
(in pixels)

Viewport size
(in pixels)



  

Normalized Device Coordinates

● Maps viewport to [-1, 1]2

● Allows us to use a consistent set of coordinates
for projection

● OpenGL handles the mapping from NDC to pixel
coordinates

Viewport

(-1, -1)

(-1, 1) (1, 1)

(1, -1)



  

View Volume
Visible part of scene, typically frustum of a pyramid
 

Mapped to [-1, 1]3 in
normalized device
coordinates

(everything outside
is discarded)

(-1, -1, 1)

(-1, 1, 1)

(1, 1, 1)

(1, -1, 1)

Viewport

View volume

(-1, -1, -1)

(-1, 1, -1)
(1, 1, -1)

(1, -1, -1)

Near clipping plane

Far clipping plane



  

Projective Transformation

● Maps view volume to [-1, 1]3 (NDC)
● Viewer is assumed to be looking along –Z

● Consistent with XY coordinates for viewport

Z

Y

X

Increasing depth



  

Orthographic (Parallel) Projection

● Viewer at infinity
● Object appears same size regardless of distance
● View volume assumed to have bounding planes

x = l ≡ left plane

x = r ≡ right plane

y = b ≡ bottom plane

y = t ≡ top plane

z = n ≡ near plane

z = f ≡ far plane

(l, b, n)

(r, t, f)

Z

Y

X



  

Orthographic Projection Matrix

[
2
r−l

0 0 − r+l
r−l

0
2

t−b
0 − t+b

t−b

0 0
2

n− f
− n+ f

n− f
0 0 0 1

]
● Maps [l, r] × [b, t] × [f, n] to [-1, 1]3

● Since n and f are negative, n > f



  

Perspective Projection

● Objects further away appear smaller
● Rays converge at eye, assumed to be at origin
● (l, r, b, t) now specify boundaries of view volume

at near clipping plane

(l, b, n)

(r, t, n)

Z

Y

X

(0, 0, 0)



  

Perspective Projection Matrix

[
2n

r−l
0

l+r
l−r

0

0
2 n

t−b
b+t
b−t

0

0 0
f +n

n− f
2 f n
f −n

0 0 1 0
]

● We finally use that homogenous coordinate!
● Remember to divide by h to get the final point



  

Camera Transformation

● The last missing piece is to align the camera with
the direction of view

● Camera orientation is specified (in world
coordinates) by:
● the eye position e
● the gaze direction g
● the view-up vector t
● (neither g nor t need be

unit, and t need not even
be exactly perpendicular to g)

t

g

e



  

Camera Transformation

● We construct an orthonormal basis [u ̂, v ̂, w ̂] from
g, t

w ̂ = –g / ║g║
u ̂ = (t × w)̂  / ║t × w ̂║
v ̂ = w ̂ × u ̂

● u ̂ is the target X axis,
v ̂ the target Y axis, and
w ̂ the target Z axis

v ̂

g

e

w ̂ u ̂

t



  

Camera Transformation Matrix

[ u x u y u z 0
v x v y v z 0
wx w y wz 0
0 0 0 1

] [ 1 0 0 −e x

0 1 0 −e y

0 0 1 −e z

0 0 0 1
]

Change of basis to
uvw coordinates

Translate eye to origin

*



  

The Full Transformation Pipeline

Every object is transformed by

T = Projection * Camera * Model



  

Back to that glMatrixMode thing...

● OpenGL maintains multiple current transformation
matrices, and corresponding stacks

● The important ones (for us) are:
● the Model-View Matrix M, and
● the Projection Matrix P

● The full transformation applied to an object is actually P *
M (in that order, right-to-left)

● By convention, the projective transform
(perspective/orthographic) is put in P, and everything else
(camera, model, …) in M



  

OpenGL Matrix Modes

● To select the projection matrix (and stack):

glMatrixMode(GL_PROJECTION);

● To select the model-view matrix (and stack):

glMatrixMode(GL_MODELVIEW);



  

The Full Transform Once Again…

Every object is transformed by

T = Projection * Camera * Model

GL_PROJECTION GL_MODELVIEW



  

Recap
● Z-buffer to detect visible surfaces

● Surfaces tessellated into simple primitives

● Draw primitives with glBegin/glEnd blocks
● glVertex, glNormal, glColor
● Primitives are rasterized to framebuffer

● Nested transform blocks
● glPushMatrix, glPopMatrix, glLoadMatrix, glMultMatrix

● Projection * Camera * Model transform applied to each
object

● Perspective/orthographic projection, camera (uvw) coordinates,
GL_PROJECTION, GL_MODELVIEW
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