Curves and Surfaces

CS475 / 675, Fall 2016

Siddhartha Chaudhuri
Möbius strip: 1 surface, 1 edge
Klein bottle: 1 surface, no edges
Curves and Surfaces

- **Curve**: 1D set
 - Generally defined as $f : \mathbb{R} \to X$, where X is some space

- **Surface**: 2D set
 - Generally defined as $f : \mathbb{R}^2 \to X$
 - X is the space in which the set is *embedded*
 - Dimension of curve/surface \neq Dimension of X!
 - E.g. plane is 2D surface embedded in 3D
Parametric Curves

- \(p = f(t) \)
 - \(f(...) \) is a \textit{vector-valued function}

- Line: \(p = tu + p_0 \)
 - \(u \) is direction of line, \(p_0 \) is any point on the line
 - Ray: \(t \geq 0 \)
 - Line segment: \(t \in [0, 1] \)

- Circle: \((x, y) = (r \cos t, r \sin t)\)
Parametric Curves

Parametric curve $\mathbf{f}(\text{time})$ traced out by a stunt plane
Parametric Surfaces

- $p = f(s, t)$
- Plane: $p = su + tv + p_0$
 - u, v are any two directions in the plane
 - p_0 is any point on it
- Sphere: $(x, y, z) = (r \cos s \sin t, r \sin s \sin t, r \cos t)$
- **Note**: (s, t) provide a set of texture coordinates for the surface
- A d-dimensional set is defined with d parameters
Implicit Forms

- **Curve embedded in 2D:** \(f(x, y) = 0 \)
 - \(f(...) \) is a *scalar-valued function*
 - Line: \(ax + by + 1 = 0 \)
 - Circle: \(x^2 + y^2 - r^2 = 0 \)

- **Surface embedded in 3D:** \(f(x, y, z) = 0 \)
 - Plane: \(ax + by + cz + 1 = 0 \)
 - Sphere: \(x^2 + y^2 + z^2 - r^2 = 0 \)

- In general, an implicitly defined set consists of points \(p \) s.t. \(f(p) = 0 \)
Implicit Forms

• Also called *level set* or *isocontour*

• Usually written as $f(p) = c$, which can be recast to the standard form: $f(p) - c = 0$

Level sets of the Earth's terrain

$height(x, y) = constant$

(Banaue rice terraces, the Philippines)
Normal to Curve Embedded in 2D

- From parametric form: Normal to $\mathbf{p} = \mathbf{f}(t) = (x(t), y(t))$ is
 \[
 \left(-\frac{d y}{d t}, \frac{d x}{d t} \right)
 \]

- From implicit form: Normal to $f(x, y) = 0$ is
 \[
 \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)
 \]
Normal to Surface Embedded in 3D

- From parametric form:
 Normal to $\mathbf{p} = \mathbf{f}(s, t)$ is
 \[
 \frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t}
 \]

- From implicit form:
 Normal to $f(x, y, z) = 0$ is
 \[
 \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)
 \]
Caution!

- Normals can point in **two opposing directions**
 - Choose a **consistent convention**
 - For closed surfaces we usually take the outward direction

- Many formulæ require **unit normals**
 - Divide by the length of the normal to **unitize**
Piecewise Linear Approximation of Curve

- Straight lines are easier to process and display than curves!
Piecewise Linear Approximation of Surface

- Polygons are easier to process and display than curved surfaces!

Triangle Mesh
Polygon Meshes

• Set of edge-connected planar polygons (usually triangles or quads)
 • Faces share vertices and edges
 • To avoid repeating vertices, store each vertex once
 • Each face stored as set of indices into the vertex list

• Connectivity of faces also called *mesh topology*

• Normal at vertex often estimated as average of unit normals of all faces sharing that vertex
 • Useful in practice, but less precise than differentiating original surface
Displaying Polygon Meshes

- **Flat shading**: Compute shading at face center, use for entire face

- **Per-vertex (Gouraud) shading**: Compute shading at vertices, interpolate to face interiors

- **Per-fragment (Phong) shading**: Interpolate normals to face interiors, compute shading at each fragment
 - Don't confuse with Phong reflection model!
Displaying Polygon Meshes

Flat shading

Per-vertex (Gouraud) shading

Per-fragment (Phong) shading

(Camillo Trevisan)
Displaying Polygon Meshes

Flat shading Per-vertex (Gouraud) shading Per-fragment (Phong) shading

(Paul Heckbert)
Controlling a Curve

- Specify control parameters at a few locations
 - Points
 - Tangents
 - ...
- Make the curve conform to these parameters
Interpolation with Splines

- **Want:** Smooth curve through sequence of points
- **Intuition:** Generate the curve in parts, one between each pair of points
- This is called a *spline curve*
- Has *local control* (small change won't affect whole curve)
Cubic Curve

- \(P(t) = at^3 + bt^2 + ct + d \)
- 4 degrees of freedom
 - For instance, can be specified completely by 4 points on the curve
- Popular tradeoff between control and simplicity
- Multiple cubic segments can be linked together into a longer and more complex curve
Cubic Hermite Interpolation

- Specify positions h_0, h_1 and tangents (slopes, derivatives) h_2, h_3 at two points: $t = 0$ and $t = 1$
Cubic Hermite Interpolation

• **Q:** Why tangents and not two extra points?
• **A:** When we want two curve segments to link up smoothly, we can just require them to have a common tangent at the boundary.
Cubic Hermite Interpolation

\[P(t) = at^3 + bt^2 + ct + d \]
\[P'(t) = 3at^2 + 2bt + c \]

\[h_0 = P(0) = d \]
\[h_1 = P(1) = a + b + c + d \]
\[h_2 = P'(0) = c \]
\[h_3 = P'(1) = 3a + 2b + c \]
Matrix Representation

\[h_0 = d \]
\[h_1 = a + b + c + d \]
\[h_2 = c \]
\[h_3 = 3a + 2b + c \]

\[
\begin{bmatrix}
 h_0 \\
 h_1 \\
 h_2 \\
 h_3 \\
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
\end{bmatrix}
\]

Hermite constraint matrix
Matrix Representation

\[h = Ca \quad \Rightarrow \quad a = C^{-1}h \]

\[
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix} =
\begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
h_0 \\
h_1 \\
h_2 \\
h_3
\end{bmatrix}
\]

Hermite basis matrix
Matrix Representation of Polynomials

\[P(t) = \begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \]
Matrix Representation of Polynomials

\[P(t) = \begin{bmatrix} h_0 & h_1 & h_2 & h_3 \end{bmatrix} \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \]

\((C^{-1})^T\)
Matrix Representation of Polynomials

\[P(t) = \begin{bmatrix} h_0 & h_1 & h_2 & h_3 \end{bmatrix} \begin{bmatrix} H_0(t) \\ H_1(t) \\ H_2(t) \\ H_3(t) \end{bmatrix} \]

Hermite basis functions

\[P(t) = \sum_{i=0}^{3} h_i H_i(t) \]
Hermite Basis Functions

\[H_0(t) = 2t^3 - 3t^2 + 1 \]
\[H_1(t) = -2t^3 + 3t^2 \]
\[H_2(t) = t^3 - 2t^2 + t \]
\[H_3(t) = t^3 - t^2 \]
Catmull-Rom Interpolation

- **Want**: Smooth curve through sequence of points
- **Intuition**: A plausible tangent at each point can be inferred directly from the data
 - Now use Hermite interpolation
Catmull-Rom Interpolation

- For each segment \((P_0, P_1)\), use neighboring control points \(P_{-1}, P_2\) and require that:
 - Tangent at \(P_0\) be parallel to \(P_{-1}P_1\)
 - Tangent at \(P_1\) be parallel to \(P_0P_2\)
Catmull-Rom Interpolation

- For each segment \((P_0, P_1)\), use neighboring control points \(P_{-1}, P_2\) and require that:
 - Tangent at \(P_0\) be parallel to \(\overline{P_{-1}P_1}\)
 - Tangent at \(P_1\) be parallel to \(\overline{P_0P_2}\)

\[
\begin{align*}
 h_0 &= \frac{1}{2} (P_0 - P_{-1}) \\
 h_1 &= \frac{1}{2} (P_1 - P_0) \\
 h_2 &= \frac{1}{2} (P_1 - P_{-1}) \\
 h_3 &= \frac{1}{2} (P_2 - P_0)
\end{align*}
\]
Catmull-Rom Interpolation

- In terms of Hermite constraints:

\[
\begin{align*}
 h_0 &= P_0 \\
 h_1 &= P_1 \\
 h_2 &= \frac{1}{2} (P_1 - P_{-1}) \\
 h_3 &= \frac{1}{2} (P_2 - P_0)
\end{align*}
\]
Catmull-Rom Interpolation

- Repeat for every such interval
- Resulting curve is:
 - C_0-continuous (segments meet end-to-end)
 - C_1-continuous (C_0 + derivative is continuous)

 - Great for smooth animation paths!
Curves in 2D/3D/…

• Control points/tangents can be any-dimensional
 • One way to look at it: treat each coordinate separately, so we have different \([a, b, c, d]\) for each dimension
 • Another way: the constraints and coefficients are now vectors, not scalars
• \(t\) is “distance” along curve from one point to the next

\[
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix} = C^{-1} \begin{bmatrix}
h_0 \\
h_1 \\
h_2 \\
h_3
\end{bmatrix}
\]
Curved Surfaces as Spline Patches

- Grid of control points (control polyhedron)
- Surface indexed by \((s, t) \in \mathbb{R}^2\)
- Basis functions are pairwise products of 1D (curve) basis functions

Two bicubic patches joined smoothly