

Curves and Surfaces

CS475 / 675, Fall 2016

Siddhartha Chaudhuri

(M
öb

iu
s

st
rip

: I
nd

uc
tiv

el
oa

d@
W

ik
ip

ed
ia

)

Möbius strip: 1 surface, 1 edge Klein bottle: 1 surface, no edges

Curves and Surfaces

● Curve: 1D set
● Generally defined as f : ℝ → X, where X is some

space

● Surface: 2D set
● Generally defined as f : ℝ2 → X

● X is the space in which the set is embedded
● Dimension of curve/surface ≠ Dimension of X!
● E.g. plane is 2D surface embedded in 3D

Parametric Curves
● p = f(t)

● f(...) is a vector-valued function

● Line: p = tu + p
0

● u is direction of line, p
0
 is any point on the line

● Ray: t ≥ 0

● Line segment: t ∈ [0, 1]

● Circle: (x, y) = (r cos t, r sin t)

Parametric Curves

Parametric curve f(time) traced out by a stunt plane

Parametric Surfaces
● p = f(s, t)

● Plane: p = su + tv + p
0

● u, v are any two directions in the plane
● p

0
 is any point on it

● Sphere: (x, y, z) = (r cos s sin t, r sin s sin t, r cos t)

● Note: (s, t) provide a set of texture coordinates for
the surface

● A d-dimensional set is defined with d parameters

Implicit Forms

● Curve embedded in 2D: f(x, y) = 0

● f(...) is a scalar-valued function
● Line: ax + by + 1 = 0

● Circle: x2 + y2 – r2 = 0

● Surface embedded in 3D: f(x, y, z) = 0

● Plane: ax + by + cz + 1 = 0

● Sphere: x2 + y2 + z2 – r2 = 0

● In general, an implicitly defined set consists of
points p s.t. f(p) = 0

Implicit Forms
● Also called level set or isocontour

● Usually written as f(p) = c, which can be recast to the
standard form: f(p) – c = 0

Level sets of the
Earth's terrain

height(x, y) = constant

(Banaue rice terraces,
the Philippines)

Normal to Curve Embedded in 2D

● From parametric form:
Normal to p = f(t) = (x(t), y(t)) is

● From implicit form:
Normal to f(x, y) = 0 is

∂ f
∂ x

,∂ f
∂ y 

Normal

Ta
ng

en
t−d y

d t
,
d x
d t 

Normal to Surface Embedded in 3D

● From parametric form:
Normal to p = f(s, t) is

● From implicit form:
Normal to f(x, y, z) = 0 is

∂ f
∂ s

× ∂ f
∂ t

∂ f
∂ x

,
∂ f
∂ y

,
∂ f
∂ z 

Normal

Tangent
plane

(Oleg Alexandrov)

Caution!
● Normals can point in two opposing directions

● Choose a consistent convention
● For closed surfaces we usually take the outward

direction

● Many formulæ require unit normals
● Divide by the length of the normal to unitize

or ?

Piecewise Linear Approximation of Curve

● Straight lines are easier to process and display
than curves!

Piecewise Linear Approximation of Surface

Triangle Mesh

● Polygons are easier to process and display than
curved surfaces!

Polygon Meshes
● Set of edge-connected planar polygons (usually triangles

or quads)
● Faces share vertices and edges
● To avoid repeating vertices, store each vertex once
● Each face stored as set of indices into the vertex list

● Connectivity of faces also called mesh topology
● Normal at vertex often estimated

as average of unit normals of
all faces sharing that vertex
● Useful in practice, but less precise

than differentiating original surface

Displaying Polygon Meshes

● Flat shading: Compute shading at
face center, use for entire face

● Per-vertex (Gouraud) shading:
Compute shading at vertices,
interpolate to face interiors

● Per-fragment (Phong) shading:
Interpolate normals to face interiors,
compute shading at each fragment
● Don't confuse with Phong

reflection model!

Q
ua

lit
y

Sp
ee

d

Displaying Polygon Meshes

Flat shading Per-vertex
(Gouraud)
shading

Per-fragment
(Phong)
shading

(Camillo Trevisan)

Displaying Polygon Meshes

Flat shading Per-vertex
(Gouraud)
shading

Per-fragment
(Phong)
shading

(Paul Heckbert)

Controlling a Curve

● Specify control
parameters at a few
locations
● Points
● Tangents
● …

● Make the curve conform
to these parameters

Control pointControl point

ControlControl
pointpoint

ControlControl
pointpoint

(G
et

ty
 Im

ag
es

)

Interpolation with Splines
● Want: Smooth curve through sequence of points
● Intuition: Generate the curve in parts, one

between each pair of points
● This is called a spline curve
● Has local control (small change won't affect whole curve)

t
0 1 2-1

P
0

P
–1

P
1 P

2

Cubic Curve

● P(t) = at3 + bt2 + ct + d

● 4 degrees of freedom
● For instance, can be specified completely by 4 points

on the curve

● Popular tradeoff between control and simplicity
● Multiple cubic segments can be linked together

into a longer and more complex curve

Cubic Hermite Interpolation

● Specify positions h
0
, h

1
 and tangents (slopes,

derivatives) h
2
, h

3
 at two points: t = 0 and t = 1

Tangent = h
2 Tangent = h

3

h
0

h
1

t
0 1

Cubic Hermite Interpolation

● Q: Why tangents and not two extra points?
● A: When we want two curve segments to link up

smoothly, we can just require them to have a
common tangent at the boundary

Cubic Hermite Interpolation

P(t) = at3 + bt2 + ct + d

P'(t) = 3at2 + 2bt + c

h
0

= P(0) = d
h

1
= P(1) = a + b + c + d

h
2

= P'(0) = c
h

3
= P'(1) = 3a + 2b + c

Matrix Representation
h

0
= d

h
1

= a + b + c + d
h

2
= c

h
3

= 3a + 2b + c

[h0

h1

h2

h3
] = [0 0 0 1

1 1 1 1
0 0 1 0
3 2 1 0

][abc
d
]

h C a=

Hermite constraint matrix

Matrix Representation

h = Ca ⇒ a = C-1h

[a
b
c
d
] = [2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

][h0

h1

h2

h3
]

Hermite basis matrix

Matrix Representation of Polynomials

P t  = [a b c d] [t
3

t2

t
1
]

Matrix Representation of Polynomials

P t  = [h0 h1 h2 h3] [2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

] [t
3

t2

t
1
]

(C-1)T

Matrix Representation of Polynomials

P t  = [h0 h1 h2 h3] [H 0t 
H 1t 
H 2t 
H 3t 

]
Hermite basis functions

P(t) = Σ h
i
 H

i
(t)

i = 0

3

Hermite Basis Functions

H
0
(t) = 2t3 – 3t2 + 1

H
1
(t) = –2t3 + 3t2

H
2
(t) = t3 – 2t2 + t

H
3
(t) = t3 – t2

H
0
(t) H

1
(t)

H
2
(t)

H
3
(t)

Catmull-Rom Interpolation

● Want: Smooth curve through sequence of points
● Intuition: A plausible tangent at each point can be

inferred directly from the data
● Now use Hermite interpolation

P
0

t
0 1 2-1

P
1 P

2

P
–1

Catmull-Rom Interpolation
● For each segment (P

0
, P

1
), use neighboring control

points P
–1
, P

2
 and require that:

● Tangent at P
0
 be parallel to

● Tangent at P
1
 be parallel to

P
0

t
0 1 2-1

P
–1

P
1 P

2

P−1 P1

P0 P2

Catmull-Rom Interpolation

h
0 t

0 1 2-1

h
1

h
3
 = ½ (P

2
 – P

0
)

h
2
 = ½ (P

1
 – P

–1
)

P
0

P
–1

P
1 P

2

● For each segment (P
0
, P

1
), use neighboring control

points P
–1
, P

2
 and require that:

● Tangent at P
0
 be parallel to

● Tangent at P
1
 be parallel to

P−1 P1

P0 P2

Catmull-Rom Interpolation

● In terms of Hermite constraints:

h
0

= P
0

h
1

= P
1

h
2

= ½ (P
1
 – P

–1
)

h
3

= ½ (P
2
 – P

0
)

Catmull-Rom Interpolation
● Repeat for every such interval
● Resulting curve is:

● C0-continuous (segments meet end-to-end)
● C1-continuous (C0 + derivative is continuous)

– Great for smooth animation paths!

t
0 1 2-1

P
0

P
–1

P
1 P

2

Curves in 2D/3D/…
● Control points/tangents can be any-dimensional

● One way to look at it: treat each coordinate separately,
so we have different [a, b, c, d] for each dimension

● Another way: the constraints and coefficients are now
vectors, not scalars

● t is “distance” along curve from one point to the next

[abc
d
] = C−1 [h0

h1

h2

h3
]

Curved Surfaces as Spline Patches
● Grid of control points (control polyhedron)
● Surface indexed by (s, t) ∈ ℝ2

● Basis functions are pairwise products of 1D (curve)
basis functions

Two bicubic patches joined smoothly

(S
al

om
on

 2
00

6)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

