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Möbius strip: 1 surface, 1 edge Klein bottle: 1 surface, no edges



  

Curves and Surfaces

● Curve: 1D set
● Generally defined as f : ℝ → X, where X is some

space

● Surface: 2D set
● Generally defined as f : ℝ2 → X

● X is the space in which the set is embedded
● Dimension of curve/surface  ≠  Dimension of X!
● E.g. plane is 2D surface embedded in 3D



  

Parametric Curves
● p = f(t)

● f(...) is a vector-valued function

● Line: p = tu + p
0

● u is direction of line, p
0
 is any point on the line

● Ray: t ≥ 0

● Line segment: t ∈ [0, 1]

● Circle: (x, y) = (r cos t, r sin t)



  

Parametric Curves

Parametric curve f(time) traced out by a stunt plane



  

Parametric Surfaces
● p = f(s, t)

● Plane: p = su + tv + p
0

● u, v are any two directions in the plane
● p

0
 is any point on it

● Sphere: (x, y, z) = (r cos s sin t, r sin s sin t, r cos t)

● Note: (s, t) provide a set of texture coordinates for
the surface

● A d-dimensional set is defined with d parameters



  

Implicit Forms

● Curve embedded in 2D:   f(x, y) = 0

● f(...) is a scalar-valued function
● Line: ax + by + 1 = 0

● Circle: x2 + y2 – r2 = 0

● Surface embedded in 3D:   f(x, y, z) = 0

● Plane: ax + by + cz + 1  = 0

● Sphere: x2 + y2 + z2 – r2 = 0

● In general, an implicitly defined set consists of
points p s.t. f(p) = 0



  

Implicit Forms
● Also called level set or isocontour

● Usually written as f(p) = c, which can be recast to the
standard form: f(p) – c = 0

Level sets of the
Earth's terrain

height(x, y) = constant

(Banaue rice terraces,
the Philippines)



  

Normal to Curve Embedded in 2D

● From parametric form:
Normal to p = f(t) = (x(t), y(t)) is

● From implicit form:
Normal to f(x, y) = 0 is
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Normal to Surface Embedded in 3D

● From parametric form:
Normal to p = f(s, t) is

● From implicit form:
Normal to f(x, y, z) = 0 is

∂ f
∂ s

× ∂ f
∂ t
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(Oleg Alexandrov)



  

Caution!
● Normals can point in two opposing directions

● Choose a consistent convention
● For closed surfaces we usually take the outward

direction

● Many formulæ require unit normals
● Divide by the length of the normal to unitize

or ?



  

Piecewise Linear Approximation of Curve

● Straight lines are easier to process and display
than curves!



  

Piecewise Linear Approximation of Surface

Triangle Mesh

● Polygons are easier to process and display than
curved surfaces!



  

Polygon Meshes
● Set of edge-connected planar polygons (usually triangles

or quads)
● Faces share vertices and edges
● To avoid repeating vertices, store each vertex once
● Each face stored as set of indices into the vertex list

● Connectivity of faces also called mesh topology
● Normal at vertex often estimated

as average of unit normals of
all faces sharing that vertex
● Useful in practice, but less precise

than differentiating original surface



  

Displaying Polygon Meshes

● Flat shading: Compute shading at
face center, use for entire face

● Per-vertex (Gouraud) shading:
Compute shading at vertices,
interpolate to face interiors

● Per-fragment (Phong) shading: 
Interpolate normals to face interiors,
compute shading at each fragment
● Don't confuse with Phong

reflection model!
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Displaying Polygon Meshes

Flat shading Per-vertex
(Gouraud)
shading

Per-fragment
(Phong)
shading

(Camillo Trevisan)



  

Displaying Polygon Meshes

Flat shading Per-vertex
(Gouraud)
shading

Per-fragment
(Phong)
shading

(Paul Heckbert)



  

Controlling a Curve

● Specify control
parameters at a few
locations
● Points
● Tangents
● …

● Make the curve conform
to these parameters

Control pointControl point

ControlControl
pointpoint

ControlControl
pointpoint
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Interpolation with Splines
● Want: Smooth curve through sequence of points
● Intuition: Generate the curve in parts, one

between each pair of points
● This is called a spline curve
● Has local control (small change won't affect whole curve)

t
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P
0

P
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P
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Cubic Curve

● P(t) = at3 + bt2 + ct + d

● 4 degrees of freedom
● For instance, can be specified completely by 4 points

on the curve

● Popular tradeoff between control and simplicity
● Multiple cubic segments can be linked together

into a longer and more complex curve



  

Cubic Hermite Interpolation

● Specify positions h
0
, h

1
 and tangents (slopes,

derivatives) h
2
, h

3
 at two points: t = 0 and t = 1

Tangent = h
2 Tangent = h

3

h
0

h
1

t
0 1



  

Cubic Hermite Interpolation

● Q: Why tangents and not two extra points?
● A: When we want two curve segments to link up

smoothly, we can just require them to have a
common tangent at the boundary



  

Cubic Hermite Interpolation

P(t) = at3 + bt2 + ct + d

P'(t) = 3at2 + 2bt + c

h
0

= P(0) = d
h

1
= P(1) = a + b + c + d

h
2

= P'(0) = c
h

3
= P'(1) = 3a + 2b + c



  

Matrix Representation
h

0
= d

h
1

= a + b + c + d
h

2
= c

h
3

= 3a + 2b + c

[h0

h1

h2

h3
] = [ 0 0 0 1

1 1 1 1
0 0 1 0
3 2 1 0

][abc
d
]

h C a=

Hermite constraint matrix



  

Matrix Representation

h = Ca  ⇒  a = C-1h

[a
b
c
d
] = [ 2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

][h0

h1

h2

h3
]

Hermite basis matrix



  

Matrix Representation of Polynomials

P t  = [ a b c d ] [t
3

t2

t
1
]



  

Matrix Representation of Polynomials

P t  = [ h0 h1 h2 h3 ] [ 2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

] [t
3

t2

t
1
]

(C-1)T



  

Matrix Representation of Polynomials

P t  = [ h0 h1 h2 h3 ] [H 0t 
H 1t 
H 2t 
H 3t 

]
Hermite basis functions

P(t)  =  Σ h
i
 H

i
(t)

i = 0

3



  

Hermite Basis Functions

H
0
(t) = 2t3 – 3t2 + 1

H
1
(t) = –2t3 + 3t2

H
2
(t) = t3 – 2t2 + t

H
3
(t) = t3 – t2

H
0
(t) H

1
(t)

H
2
(t)

H
3
(t)



  

Catmull-Rom Interpolation

● Want: Smooth curve through sequence of points
● Intuition: A plausible tangent at each point can be

inferred directly from the data
● Now use Hermite interpolation

P
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Catmull-Rom Interpolation
● For each segment (P

0
, P

1
), use neighboring control

points P
–1
, P

2
 and require that:

● Tangent at P
0
 be parallel to

● Tangent at P
1
 be parallel to

P
0

t
0 1 2-1

P
–1

P
1 P

2

P−1 P1

P0 P2



  

Catmull-Rom Interpolation

h
0 t

0 1 2-1

h
1

h
3
 = ½ (P

2
 – P

0
)

h
2
 = ½ (P

1
 – P

–1
)

P
0

P
–1

P
1 P

2

● For each segment (P
0
, P

1
), use neighboring control

points P
–1
, P

2
 and require that:

● Tangent at P
0
 be parallel to

● Tangent at P
1
 be parallel to

P−1 P1

P0 P2



  

Catmull-Rom Interpolation

● In terms of Hermite constraints:

h
0

= P
0

h
1

= P
1

h
2

= ½ (P
1
 – P

–1
)

h
3

= ½ (P
2
 – P

0
)



  

Catmull-Rom Interpolation
● Repeat for every such interval
● Resulting curve is:

● C0-continuous (segments meet end-to-end)
● C1-continuous (C0 + derivative is continuous)

– Great for smooth animation paths!

t
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Curves in 2D/3D/…
● Control points/tangents can be any-dimensional

● One way to look at it: treat each coordinate separately,
so we have different [a, b, c, d] for each dimension

● Another way: the constraints and coefficients are now
vectors, not scalars

● t is “distance” along curve from one point to the next

[abc
d
] = C−1 [h0

h1

h2

h3
]



  

Curved Surfaces as Spline Patches
● Grid of control points (control polyhedron)
● Surface indexed by (s, t) ∈ ℝ2

● Basis functions are pairwise products of 1D (curve)
basis functions

Two bicubic patches joined smoothly
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