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Forward Kinematics

● Incrementally manipulating each component of a flexible,
jointed object to achieve an overall desired pose

● Mathematically: find the position of the end effector,
given the angles of the joints and the length of each
articulated segment



  

Forward Kinematics Equation



  

Forward Kinematics Equation
Px1=L1×cos (Θ 1)
Py1=L1×sin(Θ 1)



  

Forward Kinematics Equation
Px2=Px1+L2×cos (Θ 1+Θ 2)
Py2=Py1+L2×sin (Θ 1+Θ 2)



  

Forward Kinematics Equation
Px2=L1×cos (Θ 1)+L2×cos(Θ 1+Θ 2)
Py2=L1×sin (Θ 1)+L2×sin (Θ 1+Θ 2)



  

Drawing Kinematic Chains

● Links should be drawn from the outermost link
(nearest the end effector) to the innermost
(nearest the root)

● The positioning of each link requires translations
and rotations from preceding links



  

Drawing Kinematic Chains
● Starting with the end effector’s object:



  

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate base to origin



  

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate base to origin

● Rotate by angle



  

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Now translate by length of next link...



  

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Now translate by length of next link…

● … and rotate the entire chain by the angle of that link



  

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate again by the length of the next link in the chain...



  

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate again by the length of the next link in the chain...

● … and rotate the entire chain by the angle of that link



  

Drawing Kinematic Chains
● Starting with the next link’s object:



  

Drawing Kinematic Chains
● Starting with the next link’s object:

● Translate the object’s base to the origin...

● … and rotate by the object’s angle



  

Drawing Kinematic Chains
● Starting with the next link’s object:

● Translate by the next object’s length...



  

Drawing Kinematic Chains
● Starting with the next link’s object:

● Translate by the next object’s length...

● … and rotate the entire chain by that object’s angle



  

Drawing Kinematic Chains
● So on, and so forth...

● Place the next link



  

Drawing Kinematic Chains
● So on, and so forth...

● Place the next link

● Translate



  

Drawing Kinematic Chains
● So on, and so forth, until the chain is complete

● Place the next link

● Translate

● Rotate



  

Inverse Kinematics
● Now that we know what Forward Kinematics (FK)

is, what is Inverse Kinematics (IK)?



  

Inverse Kinematics
● Now that we know what Forward Kinematics (FK)

is, what is Inverse Kinematics (IK)?

● Inverse Kinematics: Mathematically determining
the positions and angles of joints in a flexible,
jointed object, given the position and orientation
of some subset of the joints (typically the end
effectors)



  

Inverse Kinematics

Constraints

These motions are
automatically inferred

● Now that we know what Forward Kinematics (FK)
is, what is Inverse Kinematics (IK)?

“UTPoser”, Yamane and Nakamura, 2003



  

Inverse Kinematics

● What is IK used for?
● Originally used in industrial robotics for assembly

plants
– To get the robot to weld this point, how do I have to position

all the links in its arm?
● In computer graphics, IK is typically used for character

animation
– Animator manipulates a few handles (e.g. hands, feet)
– The system infers the pose of the rest of the skeleton



  

Types of IK solutions

● Closed form/analytical solution
● Calculate sequence of joint angles from the root to the

effector, allowing us to determine if a solution is even
possible

● By parametrizing the solution, we can get a range of
feasible configurations

● For a two link chain the solution is (almost) unique:

Θ 2=cos
−1( x

2+ y2−L1
2−L2

2

2L1L2 )
Θ 1=tan

−1(−L2 sinΘ 2 x+(L1+L2cosΘ 2) y
L2 sinΘ 2 y+(L1+L2cosΘ 2) x )



  

Types of IK solutions

● Closed form/analytical solution
● Relatively simple solution for smaller problems
● However, as the chain increases in length, each new

element adds new degrees of freedom, and the
problem quickly becomes complex



  

Types of IK solutions

● Numerical solutions
● Suitable for complex linkages
● Iteratively improve solution, progressing towards goal

configuration
● Cyclic Coordinate Descent (this class)
● Inverse Jacobian Method (next class)



  

Cyclic Coordinate Descent
● Start with a vector from the root of our effector R to the current

endpoint E
● Draw a vector from R to the desired endpoint D
● The inverse cosine of the dot product gives the angle between the

vectors: cosa=R⃗ D⋅R⃗ E



  

Cyclic Coordinate Descent
● Rotate our link so that RE falls on RD



  

Cyclic Coordinate Descent
● Move one link up the chain and repeat the process



  

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.
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Cyclic Coordinate Descent
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Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.



  

Inverse Jacobian Method
● Q: n-vector of internal parameters (joint angles)
● X: 6-vector defining the endpoint’s position and

orientation
● … we can have other target configurations/constraints

as well, but we’ll currently stick with this for simplicity

● Assume n ≥ 6

● Forward kinematics: X = F(Q)

●

● dX = J dQ

dxi=
∂ f i (Q)
d q1

dq1+
∂ f i (Q)
d q2

dq2+…+
∂ f i (Q)
d qn

dqn



  

The Jacobian

J = [
∂ f 1 (Q)
d q1

∂ f 1 (Q)
d q2

…
∂ f 1 (Q)
d qn

∂ f 2 (Q)
d q1

∂ f 2 (Q)
d q2

…
∂ f 2 (Q)
d qn

⋮ ⋮ ⋱

∂ f 6 (Q)
d q1

∂ f 6 (Q)
d q2

…
∂ f 6 (Q)
d qn

]
If J is square,  dX = J dQ   implies  dQ = J – 1 dX



  

Case where n = 6
● J is a square 6x6 matrix
● Problem: Given D (desired endpoint location), find

Q such that D = F(Q)

● Solution, starting at any initial configuration X0 
with known parameters Q0

● Interpolate linearly between X0 and D
– Produces sequence X1, X2, X3, … , Xp = D

● For i = 1, 2,…, p do
– Qi = Qi – 1 + J – 1(Qi – 1)(Xi – Xi – 1)

– Reset X1 to F(Qi)



  

Case where n > 6
● J is a 6 x n matrix
● Recall: we’re trying to solve the linear system

dX = J dQ 

● for dQ, where dX = X
i
 – X

i – 1
, and J is the Jacobian

evaluated at Q
i – 1 

● The system is under-determined!
● Too few constraints (6)
● Too many variables (n)

● We can’t take the inverse of J



  

Non-square linear system

● Assume we’re trying to solve Ax = b

… but A is not square!
● So we’ll add some constraints:

● If A has more rows than columns (over-determined), 
find x that minimizes

|| Ax – b ||
● If A has more columns than rows (under-determined),

find x satisfying Ax = b that minimizes

|| x ||



  

Enter the pseudoinverse

● If A has more columns than rows (under-
determined), find x satisfying Ax = b that
minimizes || x ||

● It turns out that this solution is given by

x = A+ b

where A+ is the pseudoinverse AT(AAT) – 1 of A

(we’ll assume A is full rank so this pseudoinverse formula works)



  

Why least-norm solution?

Let x* be the pseudoinverse solution AT(AAT) – 1 b

Proof that it is a solution:
● A x* = A AT(AAT) – 1 b = (A AT)(AAT) – 1 b = I b = b



  

Why least-norm solution?

Proof that it is least-norm:
● Consider any solution x of Ax = b

● … we have A(x – x*) = b – b = 0

● (x – x*)T x* = (x – x*)T AT(AAT) – 1 b
= (A(x – x*))T(AAT) – 1 b
= 0T (AAT) – 1 b
= 0

● … so x – x* and x* are orthogonal
● Hence, ||x||2 = ||x* + x – x*||2 = ||x*||2 + ||x – x*||2 ≥ ||x*||2



  

Derivation via Lagrange multipliers

● Problem: minimize ||x||2 = xTx
subject to Ax = b

● Solution: Introduce Lagrange multiplier λ

L(x, λ) = xTx + λT(Ax – b)
● At the minimum of L, we have

∇x 
L  =  2x + AT λ  =  0    and    ∇λ 

L  =  Ax – b  =  0

● From first condition, we have x = –AT λ / 2

● Substituting into second condition, λ = –2(AAT) – 1 b

● Hence, x = AT(AAT) – 1 b

Hence the
minimum
of L is also
a solution
of the
linear
system



  

Inverse Jacobian Method

● Need to reach some target configuration D from
initial configuration X

0

● General Algorithm:
● Interpolate linearly between X

0
 and D

– Produces sequence X
1
, X

2
, X

3
, … , X

p
 = D

● For i = 1, 2,…, p do
– Q

i
 = Q

i – 1
 + J+ (Q

i – 1
)(X

i
 – X

i – 1
)

– Reset X
1
 to F(Q

i
)



  

Inverse Jacobian Method

● Disadvantages:
● Slow to compute inverse of AAT

● Instability around singularities (J loses full rank)

● Improvement in practice:
● Use the Jacobian transpose J T instead of J +

Singular direction
(2 DOF → 1 DOF)

Non-singular



  

Jacobian Transpose Method

● Replace 

dQ = J + dX 

with

dQ = J T dX 

● Why does this work?!!!



  

Principle of Virtual Work

● “External work = internal work”
● External work = force * distance
● Internal Work = torque * angle

f T dX = τ T dQ
● dX = J dQ      (forward kinematics)
● f T J dQ = τ T dQ     (substituting)

● f T J = τ T     (holds for any dQ)

i.e.   τ = J T f



  

Jacobian Transpose Method
● Virtual work equation:

τ = J T f

● Compare with:

dQ = J T dX

● We’re taking the distance to the goal to be a force
that pulls our end effector

● With J +, we had an exact solution to linearized
problem

● … now no longer



  

Jacobian Transpose Method
● dQ = J T dX  is not exact, but has the right trend
● Throw in a scaling factor h and iterate

(ΔQ)
i + 1

 = h J T (ΔX)
i

● h can be thought of as a timestep Δt

● So we’re just solving the differential equation

Δ Q
Δ t

=JT Δ X

dQ
dt

=JT X=JT F (Q)
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