

Forward and Inverse Kinematics

CS475 / 675, Fall 2016

Siddhartha Chaudhuri

Slides from Tiffany Barnes, Bill Baxter,
Serafim Batzoglou and Jean-Claude Latombe

http://coitweb.uncc.edu/~tbarnes2/GameDesignFall05/Slides/InverseKinematicsBeck.ppt
http://billbaxter.com/courses/290/html/index.htm
http://web.stanford.edu/class/cs273/slides/inverse-kinematics.ppt

Forward Kinematics

● Incrementally manipulating each component of a flexible,
jointed object to achieve an overall desired pose

● Mathematically: find the position of the end effector,
given the angles of the joints and the length of each
articulated segment

Forward Kinematics Equation

Forward Kinematics Equation
Px1=L1×cos (Θ 1)
Py1=L1×sin(Θ 1)

Forward Kinematics Equation
Px2=Px1+L2×cos (Θ 1+Θ 2)
Py2=Py1+L2×sin (Θ 1+Θ 2)

Forward Kinematics Equation
Px2=L1×cos (Θ 1)+L2×cos(Θ 1+Θ 2)
Py2=L1×sin (Θ 1)+L2×sin (Θ 1+Θ 2)

Drawing Kinematic Chains

● Links should be drawn from the outermost link
(nearest the end effector) to the innermost
(nearest the root)

● The positioning of each link requires translations
and rotations from preceding links

Drawing Kinematic Chains
● Starting with the end effector’s object:

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate base to origin

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate base to origin

● Rotate by angle

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Now translate by length of next link...

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Now translate by length of next link…

● … and rotate the entire chain by the angle of that link

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate again by the length of the next link in the chain...

Drawing Kinematic Chains
● Starting with the end effector’s object:

● Translate again by the length of the next link in the chain...

● … and rotate the entire chain by the angle of that link

Drawing Kinematic Chains
● Starting with the next link’s object:

Drawing Kinematic Chains
● Starting with the next link’s object:

● Translate the object’s base to the origin...

● … and rotate by the object’s angle

Drawing Kinematic Chains
● Starting with the next link’s object:

● Translate by the next object’s length...

Drawing Kinematic Chains
● Starting with the next link’s object:

● Translate by the next object’s length...

● … and rotate the entire chain by that object’s angle

Drawing Kinematic Chains
● So on, and so forth...

● Place the next link

Drawing Kinematic Chains
● So on, and so forth...

● Place the next link

● Translate

Drawing Kinematic Chains
● So on, and so forth, until the chain is complete

● Place the next link

● Translate

● Rotate

Inverse Kinematics
● Now that we know what Forward Kinematics (FK)

is, what is Inverse Kinematics (IK)?

Inverse Kinematics
● Now that we know what Forward Kinematics (FK)

is, what is Inverse Kinematics (IK)?

● Inverse Kinematics: Mathematically determining
the positions and angles of joints in a flexible,
jointed object, given the position and orientation
of some subset of the joints (typically the end
effectors)

Inverse Kinematics

Constraints

These motions are
automatically inferred

● Now that we know what Forward Kinematics (FK)
is, what is Inverse Kinematics (IK)?

“UTPoser”, Yamane and Nakamura, 2003

Inverse Kinematics

● What is IK used for?
● Originally used in industrial robotics for assembly

plants
– To get the robot to weld this point, how do I have to position

all the links in its arm?
● In computer graphics, IK is typically used for character

animation
– Animator manipulates a few handles (e.g. hands, feet)
– The system infers the pose of the rest of the skeleton

Types of IK solutions

● Closed form/analytical solution
● Calculate sequence of joint angles from the root to the

effector, allowing us to determine if a solution is even
possible

● By parametrizing the solution, we can get a range of
feasible configurations

● For a two link chain the solution is (almost) unique:

Θ 2=cos
−1(x

2+ y2−L1
2−L2

2

2L1L2)
Θ 1=tan

−1(−L2 sinΘ 2 x+(L1+L2cosΘ 2) y
L2 sinΘ 2 y+(L1+L2cosΘ 2) x)

Types of IK solutions

● Closed form/analytical solution
● Relatively simple solution for smaller problems
● However, as the chain increases in length, each new

element adds new degrees of freedom, and the
problem quickly becomes complex

Types of IK solutions

● Numerical solutions
● Suitable for complex linkages
● Iteratively improve solution, progressing towards goal

configuration
● Cyclic Coordinate Descent (this class)
● Inverse Jacobian Method (next class)

Cyclic Coordinate Descent
● Start with a vector from the root of our effector R to the current

endpoint E
● Draw a vector from R to the desired endpoint D
● The inverse cosine of the dot product gives the angle between the

vectors: cosa=R⃗ D⋅R⃗ E

Cyclic Coordinate Descent
● Rotate our link so that RE falls on RD

Cyclic Coordinate Descent
● Move one link up the chain and repeat the process

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Cyclic Coordinate Descent
● The process is repeated until the root joint is reached. Then, the

process begins all over again starting with the end effector, and
continues until we are close enough to D for an acceptable solution.

Inverse Jacobian Method
● Q: n-vector of internal parameters (joint angles)
● X: 6-vector defining the endpoint’s position and

orientation
● … we can have other target configurations/constraints

as well, but we’ll currently stick with this for simplicity

● Assume n ≥ 6

● Forward kinematics: X = F(Q)

●

● dX = J dQ

dxi=
∂ f i (Q)
d q1

dq1+
∂ f i (Q)
d q2

dq2+…+
∂ f i (Q)
d qn

dqn

The Jacobian

J = [
∂ f 1 (Q)
d q1

∂ f 1 (Q)
d q2

…
∂ f 1 (Q)
d qn

∂ f 2 (Q)
d q1

∂ f 2 (Q)
d q2

…
∂ f 2 (Q)
d qn

⋮ ⋮ ⋱

∂ f 6 (Q)
d q1

∂ f 6 (Q)
d q2

…
∂ f 6 (Q)
d qn

]
If J is square, dX = J dQ implies dQ = J – 1 dX

Case where n = 6
● J is a square 6x6 matrix
● Problem: Given D (desired endpoint location), find

Q such that D = F(Q)

● Solution, starting at any initial configuration X0
with known parameters Q0

● Interpolate linearly between X0 and D
– Produces sequence X1, X2, X3, … , Xp = D

● For i = 1, 2,…, p do
– Qi = Qi – 1 + J – 1(Qi – 1)(Xi – Xi – 1)

– Reset X1 to F(Qi)

Case where n > 6
● J is a 6 x n matrix
● Recall: we’re trying to solve the linear system

dX = J dQ

● for dQ, where dX = X
i
 – X

i – 1
, and J is the Jacobian

evaluated at Q
i – 1

● The system is under-determined!
● Too few constraints (6)
● Too many variables (n)

● We can’t take the inverse of J

Non-square linear system

● Assume we’re trying to solve Ax = b

… but A is not square!
● So we’ll add some constraints:

● If A has more rows than columns (over-determined),
find x that minimizes

|| Ax – b ||
● If A has more columns than rows (under-determined),

find x satisfying Ax = b that minimizes

|| x ||

Enter the pseudoinverse

● If A has more columns than rows (under-
determined), find x satisfying Ax = b that
minimizes || x ||

● It turns out that this solution is given by

x = A+ b

where A+ is the pseudoinverse AT(AAT) – 1 of A

(we’ll assume A is full rank so this pseudoinverse formula works)

Why least-norm solution?

Let x* be the pseudoinverse solution AT(AAT) – 1 b

Proof that it is a solution:
● A x* = A AT(AAT) – 1 b = (A AT)(AAT) – 1 b = I b = b

Why least-norm solution?

Proof that it is least-norm:
● Consider any solution x of Ax = b

● … we have A(x – x*) = b – b = 0

● (x – x*)T x* = (x – x*)T AT(AAT) – 1 b
= (A(x – x*))T(AAT) – 1 b
= 0T (AAT) – 1 b
= 0

● … so x – x* and x* are orthogonal
● Hence, ||x||2 = ||x* + x – x*||2 = ||x*||2 + ||x – x*||2 ≥ ||x*||2

Derivation via Lagrange multipliers

● Problem: minimize ||x||2 = xTx
subject to Ax = b

● Solution: Introduce Lagrange multiplier λ

L(x, λ) = xTx + λT(Ax – b)
● At the minimum of L, we have

∇x
L = 2x + AT λ = 0 and ∇λ

L = Ax – b = 0

● From first condition, we have x = –AT λ / 2

● Substituting into second condition, λ = –2(AAT) – 1 b

● Hence, x = AT(AAT) – 1 b

Hence the
minimum
of L is also
a solution
of the
linear
system

Inverse Jacobian Method

● Need to reach some target configuration D from
initial configuration X

0

● General Algorithm:
● Interpolate linearly between X

0
 and D

– Produces sequence X
1
, X

2
, X

3
, … , X

p
 = D

● For i = 1, 2,…, p do
– Q

i
 = Q

i – 1
 + J+ (Q

i – 1
)(X

i
 – X

i – 1
)

– Reset X
1
 to F(Q

i
)

Inverse Jacobian Method

● Disadvantages:
● Slow to compute inverse of AAT

● Instability around singularities (J loses full rank)

● Improvement in practice:
● Use the Jacobian transpose J T instead of J +

Singular direction
(2 DOF → 1 DOF)

Non-singular

Jacobian Transpose Method

● Replace

dQ = J + dX

with

dQ = J T dX

● Why does this work?!!!

Principle of Virtual Work

● “External work = internal work”
● External work = force * distance
● Internal Work = torque * angle

f T dX = τ T dQ
● dX = J dQ (forward kinematics)
● f T J dQ = τ T dQ (substituting)

● f T J = τ T (holds for any dQ)

i.e. τ = J T f

Jacobian Transpose Method
● Virtual work equation:

τ = J T f

● Compare with:

dQ = J T dX

● We’re taking the distance to the goal to be a force
that pulls our end effector

● With J +, we had an exact solution to linearized
problem

● … now no longer

Jacobian Transpose Method
● dQ = J T dX is not exact, but has the right trend
● Throw in a scaling factor h and iterate

(ΔQ)
i + 1

 = h J T (ΔX)
i

● h can be thought of as a timestep Δt

● So we’re just solving the differential equation

Δ Q
Δ t

=JT Δ X

dQ
dt

=JT X=JT F (Q)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

