

Rendering Large Environments

(in real time)

Siddhartha Chaudhuri

CS475/675, Fall 2016

15 polygons

Cornell Box, 1984

~850 polygons

Half Life, 1998

~12,000 polygons

Lost Planet, 2007

~500,000 polygons

Lost Planet, 2007

~3,000,000 polygons

Crysis, 2007

~25,000,000,000 polygons

Chaudhuri and Koltun, 2009

??? polygons

Jawed Karim, 2005

The fastest modern GPUs manage a
few million shaded polygons* at 30fps

* estimates highly test-dependent

How do we bridge the gap?

Largescale Rendering Cheat Sheet

● Don't render what you can't see

Largescale Rendering Cheat Sheet

● Don't render what you can't see

● Don't render what the display can't resolve

Largescale Rendering Cheat Sheet

● Don't render what you can't see

● Don't render what the display can't resolve

● People won't notice small errors, especially in
background objects

Largescale Rendering Cheat Sheet

● Don't render what you can't see

● Don't render what the display can't resolve

● People won't notice small errors, especially in
background objects

● If all else fails, fog is your best friend :)

Largescale Rendering Cheat Sheet

● Don't render what you can't see

● Don't render what the display can't resolve

● People won't notice small errors, especially in
background objects

● If all else fails, fog is your best friend :)

Don't render what you can't see
● Rasterizing invisible objects is wasteful
● Detect such objects early and ignore (cull) them

Frustum culling

Occlusion culling

Backface culling

Difficulty

Backface < Frustum <<< Occlusion

Backface Culling

● Drop faces on the far side of object meshes
● Assume face normals consistently point inside-out
● Back faces have normals pointing away from the camera

● OpenGL:
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);

● Why would anyone want
glCullFace(GL_FRONT)?

● Uses vertex winding order to determine front and back faces,
not the vertex normals you pass in!

● When does this scheme for back face culling fail?

Back

Front

Frustum Culling

● Test each object against the view frustum
● Much faster: test the bounding box instead

– If object is visible, no frustum plane can have all 8 corners on invisible side

● Optimization:
● Group objects hierarchically

– Octree (or quadtree for 2.5D scenes)
– Binary Space Partitioning (BSP) tree (or a restricted version called a kd-

tree)
– Bounding box/sphere hierarchy

● Traverse tree top-down and ignore subtrees whose roots fail the
bounding box test

Binary Space Partitioning

● Choose a plane to split
the objects

● Recurse
● Methods differ in how

splitting plane is chosen
● Standard BSP-tree: plane

of some scene polygon
● KD-tree: axis-aligned
● Tries to balance number

of objects on each side

1 2

3 4

2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

1 1

Root

Occlusion Culling

● Whole subject by itself
● General idea: Ignore background objects covered

(occluded) by foreground objects
● (Hardware) Occlusion queries
● From-region visibility
● Portal-based rendering

Hardware Occlusion Queries
● Part of OpenGL/D3D API
● At any time, pretend to

draw a dummy shape (say
the bounding box of a
complex object) and check
if any pixels are affected

● Accelerated by hierarchical
z-buffer

● Works for dynamic scenes
Unoccluded pixels of bounding box,
so object is potentially visible

From-Region Visibility

● Preprocessing:
● Break scene up into regions
● For each region, compute a potentially visible set

(PVS) of objects

● Runtime:
● Detect the region containing the observer
● Render the objects in the corresponding PVS

● PVS is usually quite conservative, so further culling
is needed

Case Study: Quake

● Preprocessing:
● Level map preprocessed into BSP-tree
● Each leaf node stores potentially visible polygons from

that region

● Runtime:
● Leaf node containing player detected by searching the

tree (very fast)
● PVS of polygons for this node are rendered
● (BSP-tree is NOT used for back-to-front rendering!)

Portal-Based Rendering

● Suitable for indoor environments
● Divide environment into cells, connected by simple

polygonal portals (doors/windows/...)
● Render:

● Neighboring cells with visible portals (check if projected polygon
is within screen limits)

● Neighbors-of-neighbors with portals visible through the first set
of portals

● … and so on

● Further culling possible with frusta through portals

Case Study: Unreal 2

Don't render what the display can't
resolve/people won't notice

● There're only ~1 million pixels on the average screen
● Why spend precious milliseconds rendering the Taj

Mahal in exquisite detail if it's only going to take up
10 pixels on the screen?

● Moral: Simplify distant objects

… assuming perspective projection

● Moral #2: Since people are usually not too interested
in the background, you can simplify over-
aggressively

Guiding Principle

For every object, choose the simplest possible
representation that will look nearly the same as the

original when rendered at the current distance

Levels of Detail (LOD)
● Coarser representations for distant objects

● Hierarchy of representations of the same object at
different resolutions

● The same idea can also be used for textures
(mipmapping)

69,451 polys 2,502 polys 251 polys 76 polys

Levels of Detail (LOD)

Terrain LODs

Environment Maps

● Very distant stuff looks the same from anywhere
within reasonable limits

● Pre-render distant objects
(including the sky) out
to a 360° image

● Texture-map it
onto a bounding
cube at runtime

Image-Based Rendering
● Render complex objects to images and texture-map them

to simple proxy shapes (impostors)
● Environment mapping is a specific example

● Billboards/sprites: Textured quads always facing the
viewer
● Single image is valid if viewer doesn't move much

Image-Based Rendering

Décoret, Sillion, Durand and Dorsey 2002

Tree decomposed into a cloud of
texture-mapped planar slices

Impostors Original

Adding Depth to Images

● Store the depth map as well as the color
● Impostor is heightfield defined by the depth map
● Fixes parallax errors (impostor is still valid when

viewing position changes significantly)
● What are the drawbacks?

Images + Geometry

+

=

Foreground Background

Viewer

Images + Geometry

+

=

Foreground Background Impostor

Viewer

Images + Geometry (Rendered View)

+

=

Foreground Background Impostor

Another Example
Geometry-to-Image Transition

LOD spectrum
(not exhaustive or exact!)

Orig
ina

l g
eo

m
et

ry

Coa
rs

er
 g

eo
m

et
ric

al
LO

Ds

Im
po

sto
rs

Env
iro

nm
en

t m
ap

s

Distance from viewer

Speed Gains (back of the envelope)

● Backface culling: ~2x
● Frustum culling: ~5x (varies inversely with FOV)
● Occlusion culling: can be huge, but no

guarantees at all except in special cases, e.g.
portal-based indoor environments

● Levels-of-detail: a uniformly dense scene of radius
r takes O(log r) time to render (prove!)

Lesson of the day: invest in good LODs!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

