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15 polygons

Cornell Box, 1984



  

~850 polygons

Half Life, 1998



  

~12,000 polygons

Lost Planet, 2007



  

~500,000 polygons

Lost Planet, 2007



  

~3,000,000 polygons

Crysis, 2007



  

~25,000,000,000 polygons

Chaudhuri and Koltun, 2009



  

??? polygons

Jawed Karim, 2005



  

The fastest modern GPUs manage a
few million shaded polygons* at 30fps

* estimates highly test-dependent



  

How do we bridge the gap?
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Don't render what you can't see
● Rasterizing invisible objects is wasteful
● Detect such objects early and ignore (cull) them

Frustum culling

Occlusion culling

Backface culling



  

Difficulty

Backface  <  Frustum  <<<  Occlusion



  

Backface Culling

● Drop faces on the far side of object meshes
● Assume face normals consistently point inside-out
● Back faces have normals pointing away from the camera

● OpenGL:
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);

● Why would anyone want
glCullFace(GL_FRONT)?

● Uses vertex winding order to determine front and back faces,
not the vertex normals you pass in!

● When does this scheme for back face culling fail?

Back

Front



  

Frustum Culling

● Test each object against the view frustum
● Much faster: test the bounding box instead

– If object is visible, no frustum plane can have all 8 corners on invisible side

● Optimization:
● Group objects hierarchically

– Octree (or quadtree for 2.5D scenes)
– Binary Space Partitioning (BSP) tree (or a restricted version called a kd-

tree)
– Bounding box/sphere hierarchy

● Traverse tree top-down and ignore subtrees whose roots fail the
bounding box test



  

Binary Space Partitioning

● Choose a plane to split
the objects

● Recurse
● Methods differ in how

splitting plane is chosen
● Standard BSP-tree: plane

of some scene polygon
● KD-tree: axis-aligned
● Tries to balance number

of objects on each side

1   2   

3   4   

2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

1 1

Root



  

Occlusion Culling

● Whole subject by itself
● General idea: Ignore background objects covered

(occluded) by foreground objects
● (Hardware) Occlusion queries
● From-region visibility
● Portal-based rendering



  

Hardware Occlusion Queries
● Part of OpenGL/D3D API
● At any time, pretend to

draw a dummy shape (say
the bounding box of a
complex object) and check
if any pixels are affected

● Accelerated by hierarchical
z-buffer

● Works for dynamic scenes
Unoccluded pixels of bounding box,
so object is potentially visible



  

From-Region Visibility

● Preprocessing:
● Break scene up into regions
● For each region, compute a potentially visible set

(PVS) of objects

● Runtime:
● Detect the region containing the observer
● Render the objects in the corresponding PVS

● PVS is usually quite conservative, so further culling
is needed



  

Case Study: Quake

● Preprocessing:
● Level map preprocessed into BSP-tree
● Each leaf node stores potentially visible polygons from

that region

● Runtime:
● Leaf node containing player detected by searching the

tree (very fast)
● PVS of polygons for this node are rendered
● (BSP-tree is NOT used for back-to-front rendering!)



  

Portal-Based Rendering

● Suitable for indoor environments
● Divide environment into cells, connected by simple

polygonal portals (doors/windows/...)
● Render:

● Neighboring cells with visible portals (check if projected polygon
is within screen limits)

● Neighbors-of-neighbors with portals visible through the first set
of portals

● … and so on

● Further culling possible with frusta through portals



  

Case Study: Unreal 2



  

Don't render what the display can't
resolve/people won't notice

● There're only ~1 million pixels on the average screen
● Why spend precious milliseconds rendering the Taj

Mahal in exquisite detail if it's only going to take up
10 pixels on the screen?

● Moral: Simplify distant objects

… assuming perspective projection

● Moral #2: Since people are usually not too interested
in the background, you can simplify over-
aggressively



  

Guiding Principle

For every object, choose the simplest possible
representation that will look nearly the same as the

original when rendered at the current distance



  

Levels of Detail (LOD)
● Coarser representations for distant objects

● Hierarchy of representations of the same object at
different resolutions

● The same idea can also be used for textures
(mipmapping)

69,451 polys 2,502 polys 251 polys 76 polys



  

Levels of Detail (LOD)



  

Terrain LODs



  

Environment Maps

● Very distant stuff looks the same from anywhere
within reasonable limits

● Pre-render distant objects
(including the sky) out
to a 360° image

● Texture-map it
onto a bounding
cube at runtime



  

Image-Based Rendering
● Render complex objects to images and texture-map them

to simple proxy shapes (impostors)
● Environment mapping is a specific example

● Billboards/sprites: Textured quads always facing the
viewer
● Single image is valid if viewer doesn't move much



  

Image-Based Rendering

Décoret, Sillion, Durand and Dorsey 2002

Tree decomposed into a cloud of
texture-mapped planar slices

Impostors Original



  

Adding Depth to Images

● Store the depth map as well as the color
● Impostor is heightfield defined by the depth map
● Fixes parallax errors (impostor is still valid when

viewing position changes significantly)
● What are the drawbacks?



  

Images + Geometry

+

=

Foreground Background

Viewer



  

Images + Geometry

+

=

Foreground Background Impostor

Viewer



  

Images + Geometry (Rendered View)

+

=

Foreground Background Impostor



  

Another Example
Geometry-to-Image Transition



  

LOD spectrum
(not exhaustive or exact!)

Orig
ina

l g
eo

m
et

ry

Coa
rs

er
 g

eo
m

et
ric

al 
LO

Ds

Im
po

sto
rs

Env
iro

nm
en

t m
ap

s

Distance from viewer



  

Speed Gains (back of the envelope)

● Backface culling: ~2x
● Frustum culling: ~5x (varies inversely with FOV)
● Occlusion culling: can be huge, but no

guarantees at all except in special cases, e.g.
portal-based indoor environments

● Levels-of-detail: a uniformly dense scene of radius
r takes O(log r) time to render (prove!)

Lesson of the day: invest in good LODs!!!
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