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1 Computing C(n, k) by additions

Consider the following problem.

As input we are given two positive integers n & k. We wish to compute C(n, k), i.e., the
number of subsets of 1, 2, . . . , n of size k. We wish to do this using only additions and we would
like to do this from first principles.

Our first step, as in the design of many algorithms, is to derive a recursive solution.

What does this mean? We need to write C(n, k) in terms of C(n′, k′) where either n′ < n
and k′ ≤ k or n′ ≤ n and k′ < k.

A well known and natural way to derive such a relation is to use the following idea: either
a subset of size k contains the element 1 or it does not. We will count both separately (by
induction or recursion) and add them up. The number of subsets of size k that do not contain
1 is C(n− 1, k) and the number of subsets which contain 1 is C(n− 1, k− 1). Hence, C(n, k) =
C(n− 1, k) + C(n− 1, k − 1).

When the output desired by the problem is a subset of a set, such an argument is typical.
Either the first element is part of the answer or not. This splits the space in two and one can
recurse to get the two solutions and if necessary put them together.

The base cases are C(n, n) = 1 and C(n, 0) = 1.

On input n and k, how many additions does this perform? This is not our usual recurrence
and our normal ways of solving it may not yield what we are looking for. However, the answer
is

C(n, k) − 1

and can be checked easily by induction on n. Exercise: Do this.

This running time is not acceptable. For n = 1000 and k = 500, the program will not
terminate in our lifetime even if all the computers in the world are harnessed to do this.

What is the problem? And is there a fix to this problem? An inkling to the problem shows
up when we expand the recursion. It is generally a good idea to expand the recursion at least
twice.

Expanding once yields

C(n, k) = C(n− 1, k) + C(n− 1, k − 1).

Expanding each term once more yields

C(n, k) = C(n− 2, k) + C(n− 2, k − 1) + C(n− 2, k − 1) + C(n− 2, k − 2).

Notice that C(n−2, k−1) is called twice. This phenomenon gets worse inside the recursion.
We are recalculating values. It is then natural to store values of C(n′, k′) which have been
computed and reuse them when needed. This brings us to the next crucial question. How
many distinct calls are made during the recursion?. There are n possible values of first
coordinate and k possible for the second. So there are at most nk possible distinct calls. We
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will requisition a table T (i, j)1 ≤ i ≤ n and 1 ≤ j ≤ k of size nk. T (i, j) will be initialised to
−1 and will contain the value of C(i, j) at the end of execution.

Here is the modified procedure.
Initialise a table T (i, j) = −1, for 1 ≤ i ≤ n; 1 ≤ j ≤ k. Initialise T (i, 0) = 1 and T (i, i) = 1,

for each valid i.

C(n, k)

if T (n, k) = −1 then
T (n, k) = C(n− 1, k) + C(n− 1, k − 1)

Return T (n, k)
How much time does this procedure take?
There are two operations that dictate the running times. The number of additions and the

number of accesses to T (i, j). The number of additions is at most nk since each time we perform
an addition we update a table entry and there are at most nk table entries.

Once T (i, j) is filled it will be accessed at most twice. Once for filling T (i + 1, j) and the
other while filling T (i+1, j+1). This yields the O(nk) bound on the running times. By looking
at the program, can you bound the number of accesses using the number of additions?

2 Key Steps

We flesh out the key points in the design of this algorithm.

1. Give your procedure a name and clearly describe the input and output.

2. Write a recursive procedure.

3. Determine the number of distinct calls.

4. Allocate a table, with one entry per distinct call.

After this the rest is routine. We initialise the table. And recurse only if the table entry has
not been filled. Since each time we recurse we fill in a table entry, the runing times is usually
an easy function of the size of the table.

There is just one complication we may have to deal during this process. That is the number
of distinct calls may be exponential. In such a case there are some standard tricks one can try
and these are explained in forthcoming lectures using other examples. In this case too, if you
look closely we could have ended up with an exponential number of distinct calls. The different
calls with the same value of n and k are actually over different subsets. The key (and in this
case trivial) observation (which we had made implicitly) is that the value only depended on the
size of the sets, not on the sets themselves.

This entire process goes under the fancy name of Dynamic Programming.


