
CS 218 : Design and Analysis of Algorithms

Lecture 11: Dynamic Programming: Order and Method. Weighted Interval
Scheduling.

Lecturer: Sundar Vishwanathan
Computer Science & Engineering Indian Institute of Technology, Bombay

1 Weighted Interval Scheduling

Consider the following problem. Input: A set S of n intervals given by their left and right
end-points and a positive integral weight for each interval.
Output: A subset T of S of maximum weight such that no two intervals in T overlap.

A typical problem that we will encounter many times is to find a subset of a set of maximum
or minimum weight so that some constraints are satisfied.

Step 1: Find a recursive solution.
Either a subset contains the first element or it does not. We will consider both cases sep-

arately and put them together. Suppose the original set of intervals is S. Let MWNOSI(S)
denote a procedure which returns a maximum weight non overlapping subset of intervals. The
procedure then returns the maximum of

MWNOSI(S \ {I})

and
MWNOSI(S′) + WI

Here I is any interval in S, S′ is the set of all intervals that do not overlap with I. Note that
correctness can be easily proved by induction. Note also the brute force nature of the algorithm
we have just designed. We do not know whether the first interval is chosen or not; we try both
and choose the best.

There are more than one recursive calls (here two). Also, the input to the two calls have
overlap. If we unroll the recursion, we see that we may repeat calls.

Step 2 is to determine what the distinct calls to MWNOSI are. Distinct in terms of distinct
values of the input. Note that any subset of the intervals is possible depending on the input and
the way we choose I at each stage. So the best we can say about the number of recursive calls
is 2n. This running time is not acceptable.

Step 3. If the number of distinct calls is large, try ordering the input. In fact, we recommend
ordering anyway. One may just order the input arbitrarily or use some parameters from the
problem. By ordering them arbitrarily we mean considering the input as I1, . . . , In, say the
order in which the intervals are presented. There are other orders possible, for instance order
by weight, by the left end-points, etc.

We begin with the lexicographic ordering.

MWNOSI(I1, . . . , In)

. In the recursive step we return the maximum of:

MWNOSI(I2, . . . , In)

and
MWNOSI(Ip, . . . , Iq) + MWNOSI(Ir, . . . , Is) + W1.

1



2

We need to explain what p, q, r, s are. Suppose the first interval is (a, b). Then Ip, . . . , Iq are
all intervals which end before a in the same order in which they appear in I1, . . . , In. Similarly
the latter term are intervals which start after b. Exercise. Prove that the number of distinct
recursive calls here is a polynomial in n.

This is already an improvement. We emphasize that if we had not split the second call into
two disjoint parts, and worked on just the intervals which did not intersect with Ii then we
would not have a polynomial number of distinct calls. So the trick here is that if the input splits
into disjoint pieces such that the solution to one does not affect the solution to others, and the
solutions to the pieces can be put together to get the final solution then use different recursive
calls for each piece. In general, for any problem, we recommend starting with any ordering.
Lexicographic hi sahi.

Now note that if I1 were the interval that started first then we have only one term in the
second case. It also simplifies how we handle distinct recursive calls. So, we order the intervals
by their left end-points. This is what most books do, and yields the fastest procedure for the
problem. In this case, we see that the recursive calls are of the form given below and we pick
the maximum solution amongst them.

MWNOSI(I2, . . . , In)

and
MWNOSI(Ij , Ij+1, . . . , In) + W1.

This is because the first interval intersects with the first few intervals, say the first j−1. Here is
the key fact. Each call is a prefix of the input order. This yields n possible distinct calls. This
is something we will aspire for for now: see if we can keep recursive calls to prefixes or suffixes.

For completeness we need to define a generic procedure call. MWNOSI(Ij , Ij+1, . . . , In).
Write a recurrence for this. For the final output we will call this procedure with j = 1. Also
clearly define the base cases.

Now define a table T (j), that will store MWNOSI(Ij , Ij+1, . . . , In).
In the procedure, we will first initialize the table. Then when invoked, we first check if the

corresponding table entry is filled. If yes, we return it. If not, we compute this and then fill the
table entry.

How much time does this procedure take? The key is to charge operations (additions, com-
parisons) to table entries.

2 Adding to the Key Steps from last time.

1. Give the procedure a name. Clearly describe the input and output.

2. Write a recursive procedure.

3. Determine the number of distinct calls.

4. If the number of distinct calls is large, try ordering the input. Find an order such that the
number of distinct calls is as small as possible. Split the input into distinct calls during
the recursion if possible.

5. Allocate a table, with one entry per distinct call.

We will add one more step to this list and that about takes care of this design paradigm.
Note that the key steps are evaluation of the number of distinct calls and finding a suitable
order.


