
CS 218 : Design and Analysis of Algorithms

Lecture 14: Shortest Paths: Forcing a recursion

Lecturer: Sundar Vishwanathan
Computer Science & Engineering Indian Institute of Technology, Bombay

1 Problem Statement

Input: A graph with positive weights on the edges. Two vertices s and t.
Output: Shortest path between s and t.

You may have already studied many algorithms for this in the data structures course. Our
objective is to start from scratch and see how an algorithm develops. As usual we will only
calculate the length of the shortest path. The path itself can be found by doing some additional
book-keeping.

We begin with a recurrence. We know that the shortest path from s to t will pass through
one of the neighbors of s and so we may recurse on each neighbor and pick the smallest. The
procedure F irstShortestpath(G; s, t) returns the shortest path from any vertex u to t in G. The
obvious recursion is to pick the minimum of the following:

min
i

W (s, ui) + F irstShortestpath(G;ui, t).

Here ui ranges over the neighbors of s. The problem with this recurrence is that the input size
does not go down. This procedure will not terminate. For induction to work, the problem size
has to go down with each recursive call. This does not happen here and we go around in circles.

Here is a possible fix. We can remove the vertex s from G in the recursion.

min
i

W (s, ui) + F irstShortestpath(G− s;ui, t).

This will terminate, but what about the number of distinct procedure calls? It is exponential!
Why?

Describe a graph on which the above recursion will have an exponential number of recursive
calls.

So we order the input. The obvious thing to try first is to order the vertices. We wish to
find the shortest path between s and t which uses the vertices u1, . . . , un.

Shortestpath(u1, u2, . . . , un; s, t).

What about the recursion? Well, one can go along the previous path of looking at neighbors of
s, but this leads to familiar problems. We have to use the order imposed on the vertices and
the recursion has to be aided by it. The key to using the order that we try and restrict calls to
be on suffixes/prefixes/intervals of the ordered set.

The recursion we build uses a familiar logic: that either u1 is used in a shortest path between
s and t or it is not. If it is not then we recurse on

SecondShortestpath(u2 . . . , un; s, t).

If it is then we need a shortest path from s to u1 and then from u1 to t. Here is the recurrence
for that case.

SecondShortestpath(u2 . . . , un; s, u1) + SecondShortestpath(u2 . . . , un;u1, t).

1



2

What are the distinct calls? The first argument is a prefix and the second is a pair of vertices
yielding O(n3). This is fine.

Another way to deal with this is Induction++, or souping up the induction. We increase
the number of parameters in the recursion. Shortestpath(u, t, k) will return the shortest path
between u and t in G which uses at most k edges. Now the recurrence works out nicely as:

min
i

W (u, ui) + Shortestpath(ui, t, k − 1).

This souping up of induction, or adding more variables to recurse on may even be mandated
by the problem, or may help get the number of distinct recursive calls down. It is an integral
part of our bag of tricks which you should be ready to use.

In this course we have stressed the need to devise recursive algorithms. During implementa-
tion, recursion has other overheads and usually runs slower. Hence it is preferable to program
iterative algorithms. Once this course is over and you are comfortable with designing recursive
algorithms, we encourage you to convert these dynamic programming algorithms to iterative
ones. The idea is simple. Fill the table from smaller inputs to larger inputs exactly as the
recursion does, only now iteratively.


