
CS 218 : Design and Analysis of Algorithms

Lecture 3: Analysis of Algorithms

Lecturer: Sundar Vishwanathan
Computer Science & Engineering Indian Institute of Technology, Bombay

1 The Model of Computation

There are two parameters of interest for any algorithm. One is the time it takes to yield an
output and the other is the amount of memory it uses. Our focus will be on the time taken.
By analysis of an algorithm, loosely, we mean getting an upper bound on the time taken by the
algorithm for various inputs.

The computing machines on which our algorithms are analyzed are assumed to have a CPU
and adequate memory (RAM). We also assume that all the usual primitives like add, subtract,
compare, transfer of control, indirect addressing, etc, are available. Primitive operations are
assumed to have unit cost per operation. There is an alternative log cost model in which the
cost of say adding or comparing two b bit numbers is O(b).

In most cases, when our algorithm deals with n numbers, we will assume that each is O(log n)
bits long and that the cost of each operation on such numbers is O(1). However, if we run into
algorithms where the numbers grow, then we will invoke the log cost model. Our focus is on
making algorithms faster and not on conserving memory. In this course we will focus only on
running times of algorithms. However, note that if the memory requirement is large, it is very
likely that the algorithm is taking a lot of time since reading/writing to those locations will take
time.

2 Comparing Algorithms

Throughout this course, by analysis, we always mean worst case analysis. What is worst case
analysis? Here is a short discussion.

Consider two algorithms A1 and A2 for a problem Π which we wish to compare. You can
think of Π as sorting. One way to compare them is to get test cases, run both the algorithms on
these test cases and pick the one which performs better on average. This analysis is empirical
and is often used in practice. However, this is not satisfactory, since there is no guarantee about
their behavior on all inputs. Also it seems preferable to attach a figure of merit to each algorithm
so that one can compare many algorithms together. One problem with comparing algorithms
is that on different inputs different algorithms may perform better. One way to deal with this
is to consider the average behavior over all inputs. This is called average case analysis. The
other way, which we will follow, is to consider the maximum time taken over all inputs. This is
called the worst case analysis. There is another problem one has to deal with. The time taken
by any non-trivial algorithm increases with the input size. For each algorithm, for each input
size, a figure of merit based on our discussion so far could be the maximum time taken by the
algorithm over all inputs of that size.

But this entails one figure of merit for each input size which is an infinite set. Note that
this figure of merit will grow with input size. This is one problem. The other problem is that
calculation of this value for each value of input size is clearly impossible. Ideally however one

1

2

would like one figure of merit. The solution that deals simultaneously with all these problems
is to give the best upper bound one can for the running time as a function of the input size.

Let A be an algorithm. Let A(I) be the time taken by the algorithm on input I. Find the
best (slowest growing) function f which can be easily described which satisfies the following for
all n.

A(I) ≤ f(n) : |I| = n

This function f is the figure of merit we will attach to the algorithm.

