
1. A symmetric chain decomposition of Bn+1 can be constructed from
that of Bn. For n = 1, B1 itself is a symmetric chain and forms
the required decomposition. Given a symmetric chain decomposition
of Bn, for each chain Xk ⊂ Xk+1 · · · ⊂ Xn−k, add the chains Xk ⊂
Xk+1 ⊂ · · · ⊂ Xn−k ⊂ (Xn−k∪{n+1}) and the chain (Xk∪{n+1}) ⊂
· · · ⊂ (Xn−k−1 ∪ {n + 1}) if k < n− k. It is easy to verify that each of
the constructed chains is symmetric and every set in Bn+1 is in exactly
one chain.

It is also possible to give an explict description of these chains, that
is, an O(n)-time algorithm to find the next and the previous element
in the chain containing a given subset X, if there is any.

Since every symmetric chain must contain an element of the middle
level(s), the number of chains is at most

( n
bn/2c

)

, hence the maximum

antichain has size at most
( n
bn/2c

)

.

2. Suppose A is any antichain of size
( n
bn/2c

)

. By the inequality proved in
class, also called the LYM inequality,

( n
bn/2c)
∑

i=1

1
( n
|Ai|

) ≤ 1.

Since
( n
|Ai|

)

≤
( n
bn/2c

)

, for this inequality to hold, each term must be

equal to 1

( n
bn/2c)

, that is each Ai has size bn/2c or dn/2e. This implies

that if n is even, each Ai has size n/2. Thus A must be the set of
all subsets of size n/2. If n is odd, each Ai has size (n + 1)/2 or
(n − 1)/2. Suppose there are k sets in A of size (n + 1)/2 where
0 < k <

( n
(n+1)/2

)

. Then the Kruskal-Katona theorem implies that the
shadow of these sets has size > k, which implies some set in A of size
(n− 1)/2 is contained in the shadow. This contradicts the fact that A
is an antichain.

It is also possible to give a direct proof for the case when n is odd.
Consider the bipartite graph formed by subsets of size (n − 1)/2 and
(n+1)/2, where two subsets are adjacent iff they differ in excatly one
element. This graph is regular with each vertex of degree (n + 1)/2
and it is connected. This implies that the shadow of any collection of
k subsets of size (n + 1)/2 has size > k, if 0 < k <

( n
(n+1)/2

)

.

3. The proof is again by induction on n. If n = 1, the only possible
antichains are {∅}, {1}, and the result is trivially true. Suppose the
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statement is true for Bn−1. Let A be any antichain in Bn such that
every maximal chain in Bn contains exactly one subset in A. Suppose
A contains subsets of different cardinalities and let X be a subset
in A of minimum cardinality. Then |X| < n and we may assume,
without loss of generality, that n 6∈ X. Let A′ = A ∩ Bn−1. If there
is a maximal chain in Bn−1 that does not contain any element of A′,
then by adding the set {1, 2, . . . , n} to it, we get a maximal chain in
Bn that does not contain any element of A, a contradiction. (Note
that {1, 2, . . . , n} 6∈ A otherwise A cannot contain any other subset.)
Therefore every maximal chain in Bn−1 contains some element of A′.
Therfore by induction, A′ consists of all subsets of {1, 2, . . . , n − 1}
with size k, for some k. Since X ∈ A′, we have k = |X|. Let Y be a
subset in A of cardinality greater than |X| (this exists by assumption).
Then Y 6∈ A′ and n ∈ Y . However, by deleting n and possibly some
other elements from Y , we get a subset of size k not containing n that
is a subset of Y . This subset is in A′, which contradicts the fact that
A is an antichain.

4. First show that every graph with at least 2m vertices and minimum
degree at least m contains a matching of size m. This is also by
induction. For m = 1, this is trivial. Suppose uivi, for 1 ≤ i ≤ m − 1
is a matching of size m − 1 in a graph with at least 2m vertices and
minimum degree at least m. Let A be the remaining vertices. If there
is an edge joining two vertices in A, we get a matching of size m.
Therefore each vertex in A is adjacent to at least m of the vertices
ui, vi for 1 ≤ i ≤ m− 1. Let x, y be any two vertices in A. Then there
must exist an edge uivi such that there are at least 3 edges joining
{ui, vi} to {x, y}. This implies we can replace the edge uivi by either
xui, yvi or xvi, yui to get a matching of size m in G.

Suppose G is a graph with n vertices and more than f(m,n) edges.
Then n ≥ 2m (Kruskal-Katona). If every vertex has degree at least
m, the result follows by the previous argument. On the other hand, if
there exists a vertex of degree at most m − 1, delete the endpoints of
any edge incident with it. This reduces the total number of edges by
at most m − 1 + n − 2 = m + n − 3. By simple manipulations, it can
be seen that f(m,n) − (m + n − 3) ≥ f(m − 1, n − 2). Therefore by
induction, the remaining graph has a matching of size m − 1, which
together with the deleted edge gives a matching of size m in G.

5. The proof is by induction on n. The statement is trivial for n = 1 and
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it is easy to verify it for n = 2. Let 0 < x1 < x2 < · · · < xn−1 < S be
the points at which the holes are located. Note that only holes in the
interval (0, S) are important. Also assume without loss of generality
that a1 < a2 < · · · < an. The proof breaks into two cases.

Case 1. Suppose S − an < xn−1. Let m be the smallest number such
that S − am ≤ xn−1. If any of the points S − ai for m ≤ i ≤ n is
not a hole, then by induction, the grasshopper can move from 0 to
S − ai using jumps a1, . . . , ai−1, ai+1, . . . , an and avoiding the holes
x1, . . . , xn−2. Then a jump of ai gives the required sequence of jumps.
We may assume S−ai is a hole for m ≤ i ≤ n. In particular S−an = xj

for some 1 ≤ j ≤ n − 2. Consider the set of points S − an − ai for
1 ≤ i < m. If any one of these is not a hole, the grasshopper can move
from 0 to S − an − ai using jumps a1, a2, . . . , ai−1, ai+1, . . . , an−1 and
avoiding the holes x1, x2, . . . , xn−3 then jump to S − ai and then to S.
Note that S − an − ai < xn−2 but S − ai > xn−1 in this case. Since
there are only n − 1 holes, one of these two cases must hold as the
holes obtained for distinct values of i must be distinct.

Case 2. S − an ≥ xn−1. By induction, the grasshopper can move
from 0 to S − an using jumps a1, . . . , an−1 and avoiding the holes
x1, x2, . . . , xn−2. If in this path, the grasshopper lands on the hole at
xn−1, replace the jump that takes it to xn−1 by an and then take the
remaining jumps arbitrarily. Since an is the largest jump, replacing
the jump by an will take the grasshopper beyond xn−1. Since xn−1 is
the furthest hole, remaining jumps can be taken arbitrarily.
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