1. A symmetric chain decomposition of \mathcal{B}_{n+1} can be constructed from that of \mathcal{B}_{n}. For $n=1, \mathcal{B}_{1}$ itself is a symmetric chain and forms the required decomposition. Given a symmetric chain decomposition of \mathcal{B}_{n}, for each chain $X_{k} \subset X_{k+1} \cdots \subset X_{n-k}$, add the chains $X_{k} \subset$ $X_{k+1} \subset \cdots \subset X_{n-k} \subset\left(X_{n-k} \cup\{n+1\}\right)$ and the chain $\left(X_{k} \cup\{n+1\}\right) \subset$ $\cdots \subset\left(X_{n-k-1} \cup\{n+1\}\right)$ if $k<n-k$. It is easy to verify that each of the constructed chains is symmetric and every set in \mathcal{B}_{n+1} is in exactly one chain.

It is also possible to give an explict description of these chains, that is, an $O(n)$-time algorithm to find the next and the previous element in the chain containing a given subset X, if there is any.
Since every symmetric chain must contain an element of the middle level(s), the number of chains is at most $\binom{n}{\lfloor n / 2\rfloor}$, hence the maximum antichain has size at most $\binom{n}{\lfloor n / 2\rfloor}$.
2. Suppose A is any antichain of size $\binom{n}{\lfloor n / 2\rfloor}$. By the inequality proved in class, also called the LYM inequality,

$$
\sum_{i=1}^{\binom{n}{\lfloor n / 2\rfloor}} \frac{1}{\binom{n}{\left|A_{i}\right|}} \leq 1 .
$$

Since $\binom{n}{\left|A_{i}\right|} \leq\binom{ n}{\lfloor n / 2\rfloor}$, for this inequality to hold, each term must be equal to $\frac{1}{(\lfloor n / 2\rfloor)}$, that is each A_{i} has size $\lfloor n / 2\rfloor$ or $\lceil n / 2\rceil$. This implies that if n is even, each A_{i} has size $n / 2$. Thus A must be the set of all subsets of size $n / 2$. If n is odd, each A_{i} has size $(n+1) / 2$ or $(n-1) / 2$. Suppose there are k sets in A of size $(n+1) / 2$ where $0<k<\binom{n}{(n+1) / 2}$. Then the Kruskal-Katona theorem implies that the shadow of these sets has size $>k$, which implies some set in A of size $(n-1) / 2$ is contained in the shadow. This contradicts the fact that A is an antichain.
It is also possible to give a direct proof for the case when n is odd. Consider the bipartite graph formed by subsets of size $(n-1) / 2$ and $(n+1) / 2$, where two subsets are adjacent iff they differ in excatly one element. This graph is regular with each vertex of degree $(n+1) / 2$ and it is connected. This implies that the shadow of any collection of k subsets of size $(n+1) / 2$ has size $>k$, if $0<k<\binom{n}{(n+1) / 2}$.
3. The proof is again by induction on n. If $n=1$, the only possible antichains are $\{\emptyset\},\{1\}$, and the result is trivially true. Suppose the
statement is true for \mathcal{B}_{n-1}. Let A be any antichain in \mathcal{B}_{n} such that every maximal chain in \mathcal{B}_{n} contains exactly one subset in A. Suppose A contains subsets of different cardinalities and let X be a subset in A of minimum cardinality. Then $|X|<n$ and we may assume, without loss of generality, that $n \notin X$. Let $A^{\prime}=A \cap \mathcal{B}_{n-1}$. If there is a maximal chain in \mathcal{B}_{n-1} that does not contain any element of A^{\prime}, then by adding the set $\{1,2, \ldots, n\}$ to it, we get a maximal chain in \mathcal{B}_{n} that does not contain any element of A, a contradiction. (Note that $\{1,2, \ldots, n\} \notin A$ otherwise A cannot contain any other subset.) Therefore every maximal chain in \mathcal{B}_{n-1} contains some element of A^{\prime}. Therfore by induction, A^{\prime} consists of all subsets of $\{1,2, \ldots, n-1\}$ with size k, for some k. Since $X \in A^{\prime}$, we have $k=|X|$. Let Y be a subset in A of cardinality greater than $|X|$ (this exists by assumption). Then $Y \notin A^{\prime}$ and $n \in Y$. However, by deleting n and possibly some other elements from Y, we get a subset of size k not containing n that is a subset of Y. This subset is in A^{\prime}, which contradicts the fact that A is an antichain.
4. First show that every graph with at least $2 m$ vertices and minimum degree at least m contains a matching of size m. This is also by induction. For $m=1$, this is trivial. Suppose $u_{i} v_{i}$, for $1 \leq i \leq m-1$ is a matching of size $m-1$ in a graph with at least $2 m$ vertices and minimum degree at least m. Let A be the remaining vertices. If there is an edge joining two vertices in A, we get a matching of size m. Therefore each vertex in A is adjacent to at least m of the vertices u_{i}, v_{i} for $1 \leq i \leq m-1$. Let x, y be any two vertices in A. Then there must exist an edge $u_{i} v_{i}$ such that there are at least 3 edges joining $\left\{u_{i}, v_{i}\right\}$ to $\{x, y\}$. This implies we can replace the edge $u_{i} v_{i}$ by either $x u_{i}, y v_{i}$ or $x v_{i}, y u_{i}$ to get a matching of size m in G.

Suppose G is a graph with n vertices and more than $f(m, n)$ edges. Then $n \geq 2 m$ (Kruskal-Katona). If every vertex has degree at least m, the result follows by the previous argument. On the other hand, if there exists a vertex of degree at most $m-1$, delete the endpoints of any edge incident with it. This reduces the total number of edges by at most $m-1+n-2=m+n-3$. By simple manipulations, it can be seen that $f(m, n)-(m+n-3) \geq f(m-1, n-2)$. Therefore by induction, the remaining graph has a matching of size $m-1$, which together with the deleted edge gives a matching of size m in G.
5. The proof is by induction on n. The statement is trivial for $n=1$ and
it is easy to verify it for $n=2$. Let $0<x_{1}<x_{2}<\cdots<x_{n-1}<S$ be the points at which the holes are located. Note that only holes in the interval $(0, S)$ are important. Also assume without loss of generality that $a_{1}<a_{2}<\cdots<a_{n}$. The proof breaks into two cases.
Case 1. Suppose $S-a_{n}<x_{n-1}$. Let m be the smallest number such that $S-a_{m} \leq x_{n-1}$. If any of the points $S-a_{i}$ for $m \leq i \leq n$ is not a hole, then by induction, the grasshopper can move from 0 to $S-a_{i}$ using jumps $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}$ and avoiding the holes x_{1}, \ldots, x_{n-2}. Then a jump of a_{i} gives the required sequence of jumps. We may assume $S-a_{i}$ is a hole for $m \leq i \leq n$. In particular $S-a_{n}=x_{j}$ for some $1 \leq j \leq n-2$. Consider the set of points $S-a_{n}-a_{i}$ for $1 \leq i<m$. If any one of these is not a hole, the grasshopper can move from 0 to $S-a_{n}-a_{i}$ using jumps $a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n-1}$ and avoiding the holes $x_{1}, x_{2}, \ldots, x_{n-3}$ then jump to $S-a_{i}$ and then to S. Note that $S-a_{n}-a_{i}<x_{n-2}$ but $S-a_{i}>x_{n-1}$ in this case. Since there are only $n-1$ holes, one of these two cases must hold as the holes obtained for distinct values of i must be distinct.
Case 2. $S-a_{n} \geq x_{n-1}$. By induction, the grasshopper can move from 0 to $S-a_{n}$ using jumps a_{1}, \ldots, a_{n-1} and avoiding the holes $x_{1}, x_{2}, \ldots, x_{n-2}$. If in this path, the grasshopper lands on the hole at x_{n-1}, replace the jump that takes it to x_{n-1} by a_{n} and then take the remaining jumps arbitrarily. Since a_{n} is the largest jump, replacing the jump by a_{n} will take the grasshopper beyond x_{n-1}. Since x_{n-1} is the furthest hole, remaining jumps can be taken arbitrarily.

