1. A symmetric chain decomposition of B, can be constructed from
that of B,,. For n = 1, B; itself is a symmetric chain and forms
the required decomposition. Given a symmetric chain decomposition
of B, for each chain X C Xy41--- C X,,—k, add the chains X C
Xi41 C -+ C Xy C (Xp—gU{n+1}) and the chain (X;U{n+1}) C

- C (Xp—gp—1U{n+1}) if E <n—k. It is easy to verify that each of
the constructed chains is symmetric and every set in B, 41 is in exactly
one chain.

It is also possible to give an explict description of these chains, that
is, an O(n)-time algorithm to find the next and the previous element
in the chain containing a given subset X, if there is any.

Since every symmetric chain must contain an element of the middle
level(s), the number of chains is at most (|,,/, ), hence the maximum

antichain has size at most (LT:}Z j)'

2. Suppose A is any antichain of size (L?:/Z? J)‘ By the inequality proved in
class, also called the LYM inequality,

(i)
> <L
i=1 (\Ail)

Since () < (|,,j)), for this inequality to hold, each term must be

equal to (—711>, that is each A; has size |n/2| or [n/2]. This implies
n/2]
that if n is even, each A; has size n/2. Thus A must be the set of

all subsets of size n/2. If n is odd, each A; has size (n + 1)/2 or
(n — 1)/2. Suppose there are k sets in A of size (n + 1)/2 where
0 <k < ((,41)2)- Then the Kruskal-Katona theorem implies that the
shadow of these sets has size > k, which implies some set in A of size
(n—1)/2 is contained in the shadow. This contradicts the fact that A
is an antichain.

It is also possible to give a direct proof for the case when n is odd.
Consider the bipartite graph formed by subsets of size (n — 1)/2 and
(n+1)/2, where two subsets are adjacent iff they differ in excatly one
element. This graph is regular with each vertex of degree (n + 1)/2
and it is connected. This implies that the shadow of any collection of
k subsets of size (n + 1)/2 has size >k, if 0 <k < ((,,}'}) )-

3. The proof is again by induction on n. If n = 1, the only possible
antichains are {0}, {1}, and the result is trivially true. Suppose the



statement is true for B,_;. Let A be any antichain in B, such that
every maximal chain in B,, contains exactly one subset in A. Suppose
A contains subsets of different cardinalities and let X be a subset
in A of minimum cardinality. Then |X| < n and we may assume,
without loss of generality, that n ¢ X. Let A’ = AN B,_1. If there
is a maximal chain in B,_; that does not contain any element of A’
then by adding the set {1,2,...,n} to it, we get a maximal chain in
B, that does not contain any element of A, a contradiction. (Note
that {1,2,...,n} ¢ A otherwise A cannot contain any other subset.)
Therefore every maximal chain in B,,_; contains some element of A’.
Therfore by induction, A’ consists of all subsets of {1,2,...,n — 1}
with size k, for some k. Since X € A’, we have k = |X|. Let Y be a
subset in A of cardinality greater than | X| (this exists by assumption).
Then Y ¢ A’ and n € Y. However, by deleting n and possibly some
other elements from Y, we get a subset of size k not containing n that
is a subset of Y. This subset is in A’, which contradicts the fact that
A is an antichain.

4. First show that every graph with at least 2m vertices and minimum
degree at least m contains a matching of size m. This is also by
induction. For m = 1, this is trivial. Suppose u;v;, for 1 <i<m —1
is a matching of size m — 1 in a graph with at least 2m vertices and
minimum degree at least m. Let A be the remaining vertices. If there
is an edge joining two vertices in A, we get a matching of size m.
Therefore each vertex in A is adjacent to at least m of the vertices
ui,v; for 1 < ¢ < m —1. Let x,y be any two vertices in A. Then there
must exist an edge w;v; such that there are at least 3 edges joining
{ui,v;} to {x,y}. This implies we can replace the edge u;v; by either
Tu;, Yyv; or xv;, yu; to get a matching of size m in G.

Suppose G is a graph with n vertices and more than f(m,n) edges.
Then n > 2m (Kruskal-Katona). If every vertex has degree at least
m, the result follows by the previous argument. On the other hand, if
there exists a vertex of degree at most m — 1, delete the endpoints of
any edge incident with it. This reduces the total number of edges by
at most m — 1 +n — 2 =m +n — 3. By simple manipulations, it can
be seen that f(m,n) — (m+mn—3) > f(m —1,n —2). Therefore by
induction, the remaining graph has a matching of size m — 1, which
together with the deleted edge gives a matching of size m in G.

5. The proof is by induction on n. The statement is trivial for n = 1 and



it is easy to verify it forn =2. Let 0 < 21 <9 < -+ < xp_1 < S be
the points at which the holes are located. Note that only holes in the
interval (0,S) are important. Also assume without loss of generality
that a1 < as < --- < a,. The proof breaks into two cases.

Case 1. Suppose S — a,, < z,—1. Let m be the smallest number such
that S — a, < xp—1. If any of the points S — a; for m < i < n is
not a hole, then by induction, the grasshopper can move from 0 to
S — a; using jumps ai,...,a;—1,Qi+1,...,0, and avoiding the holes
Z1,...,Tn_2. Then a jump of a; gives the required sequence of jumps.
We may assume S—a; is a hole for m < i < n. In particular S—a, = z;
for some 1 < j < n — 2. Consider the set of points S — a,, — a; for
1 < i < m. If any one of these is not a hole, the grasshopper can move
from 0 to S — a, — a; using jumps a1, a2,...,0;—1,0i+1,...,0,—1 and
avoiding the holes x1,x9,...,2,_3 then jump to S — a; and then to S.
Note that S — a,, — a; < x,,—2 but S — a; > z,_1 in this case. Since
there are only n — 1 holes, one of these two cases must hold as the
holes obtained for distinct values of 7 must be distinct.

Case 2. S —a, > xp—1. By induction, the grasshopper can move
from 0 to S — a, using jumps ai,...,a,—1 and avoiding the holes
T1,%2,...,Tp—o. If in this path, the grasshopper lands on the hole at
Tn_1, replace the jump that takes it to z,,—1 by a, and then take the
remaining jumps arbitrarily. Since a, is the largest jump, replacing
the jump by a, will take the grasshopper beyond z,,_1. Since x,_1 is
the furthest hole, remaining jumps can be taken arbitrarily.



