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The recent success of vector computers such as the Cray-1 and array processors such as those 
manufactured by Floating Point Systems has increased interest in making vector operations available 
to the FORTRAN programmer. The FORTRAN standards committee is currently considering a 
successor to FORTRAN 77, usually called FORTRAN 8x, that will permit the programmer to 
explicitly specify vector and array operations. 

Although FORTRAN 8x will make it convenient to specify explicit vector operations in new 
programs, it does little for existing code. In order to benefit from the power of vector hardware, 
existing programs will need to be rewritten in some language (presumably FORTRAN 8x) that 
permits the explicit specification of vector operations. One way to avoid a massive manual recoding 
effort is to provide a translator that discovers the parallelism implicit in a FORTRAN program and 
automatically rewrites that program in FORTRAN 8x. 

Such a translation from FORTRAN to FORTRAN 8x is not straightforward because FORTRAN 
DO loops are not always semantically equivalent to the corresponding FORTRAN 8x parallel 
operation. The semantic difference between these two constructs is precisely captured by the concept 
of dependence. A translation from FORTRAN to FORTRAN 8x preserves the semantics of the 
original program if it preserves the dependences in that program. 

The theoretical background is developed here for employing data dependence to convert FOR- 
TRAN programs to parallel form. Dependence is defined and characterized in terms of the conditions 
that give rise to it; accurate tests to determine dependence are presented; and transformations that 
use dependence to uncover additional parallelism are discussed. 

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Programming; 
D.1.3 [Programming Techniques]: Concurrent Programming; D.3.4 [Processors]: Optimization 

General Terms: Languages 

Additional Key Words and Phrases: FORTRAN, detection of parallelism, language translators, 
vector computing 

1. INTRODUCTION 

With the advent of successful vector computers such as the Gay-1 [lo, 301 and 
the popularity of array processors such as the Floating Point Systems AP-120 
[13,35], there has been increased interest in making vector operations available 
to the FORTRAN programmer. One common method is to supply a “vectorizing” 

This work was supported by the IBM Corporation. 
Authors’ address: Department of Computer Science, Brown School of Engineering, Rice University, 
P.O. Box 1892, Houston, TX 77251-1892. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1987 ACM 0614-0925/87/1000-0491$01.50 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987, Pages 491-542. 



492 l R. Allen and K. Kennedy 

FORTRAN compiler [ll] as depicted in Figure 1. Here standard FORTRAN is 
accepted as input, and, as part of the optimization phase of the compiler, a 
vectorizing stage attempts to convert the innermost loops to vector operations. 
The code generator can then produce vector machine code for these operations. 

This scheme has two advantages. First, programmers need not learn a new 
language since the FORTRAN compiler itself takes on the task of discovering 
where vector operations may be useful. Second, this scheme does not require a 
major conversion effort to bring old code across. 

In practice, however, this system has drawbacks. Uncovering implicitly parallel 
operations in a program is a subtle intellectual activity-so subtle that most 
compilers to date have not been able to do a truly thorough job. As a result, the 
programmer often has to assist the compiler by recoding loops into a form that 
the compiler can handle. The Cray FORTRAN manual [ll], for example, has 
several pages devoted to such recoding methods. With this system, the program- 
mer is still obligated to rewrite his programs for a new machine, not because the 
compiler will not accept the old program, but because the compiler is unable to 
generate suitably efficient code. During a number of visits to Los Alamos 
Scientific Laboratory, which has several Crays, we have observed the widespread 
sentiment that every FORTRAN program will need to be rewritten to be 
acceptably efficient on the Cray. 

This presents the question: If we are forced to rewrite FORTRAN programs 
into vector form anyway, why not write them in a language that permits explicit 
specification of vector operations, while still maintaining the flavor of FOR- 
TRAN? Many such languages have been proposed. VECTRAN [27,28] is one of 
the earliest and most influential of such proposals, although there have been 
numerous others [7, 12, 341. In fact, it seems clear that the next ANSI standard 
for FORTRAN, which we shall refer to as FORTRAN 8x, will contain explicit 
vector operations like those in VECTRAN [5, 261. 

Suppose that, instead of a vectorizing FORTRAN compiler, we were to provide 
FORTRAN 8x compilers for use with vector machines. This would allow pro- 
grammers to bypass the implicitly sequential semantics of FORTRAN and 
explicitly code vector algorithms in a language designed for that purpose. How- 
ever, the basic problem will still be unresolved: What do we do about old code? 

One answer is to provide a translator that will take FORTRAN 66 or FOR- 
TRAN 77 as input and produce FORTRAN 8x as output. This leads to the 
system depicted in Figure 2. An advantage of this system is that the translator 
need not be as efficient as a vectorizing stage embedded in a compiler must be, 
since the translation from FORTRAN to FORTRAN 8x is usually done only 
once. Therefore, the translator can attempt more ambitious program transfor- 
mations, using techniques from program verification and artificial intelligence. 
Such a translator should uncover significantly more parallelism than a conven- 
tional vectorizing compiler. 

There is another advantage to this method. If the translator should fail to 
discover a potential vector operation in a critical program region, the programmer 
need not try to trick the translator into recognizing it. Instead, he can correct 
the problem directly in the FORTRAN 8x version. This advantage is very 
significant, because some loops can be correctly run in vector form even when 
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Fig. 1. Vectorizing FORTRAN compiler. 
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Fig. 2. Vectorizing FORTRAN translator. 

a transformation to such a form appears to violate their semantics. Such loops 
can usually be recoded by a programmer into explicit vector statements in 
FORTRAN 8x. 

This paper discusses the theoretical concepts underlying a project at 
Rice University to develop an automatic translator, called PFC (for Parallel 
FORTRAN Converter), from FORTRAN to FORTRAN 8x. The Rice project, 
based initially upon the research of Kuck and others at the University of 
Illinois [6, 17-21, 24, 32, 361, is a continuation of work begun while on leave at 
IBM Research in Yorktown Heights, N.Y. Our first implementation was based 
on the Illinois PARAFRASE compiler [20, 361, but the current version is a 
completely new program (although it performs many of the same transformations 
as PARAFRASE). Other projects that have influenced our work are the Texas 
Instruments ASC compiler [9,33], the Cray-1 FORTRAN compiler [15], and the 
Massachusetts Computer Associates Vectorizer [22, 251. 

The paper is organized into seven sections. Section 2 introduces FORTRAN 
8x and gives examples of its use. Section 3 presents an overview of the translation 
process along with an extended translation example. Section 4 develops the 
concept of interstatement dependence and shows how it can be applied to the 
problem of vectorization. Loop carried dependence and loop independent depend- 
ence are introduced in this section to extend dependence to multiple statements 
and multiple loops. Section 5 develops dependence-based algorithms for code 
generation and transformations for enhancing the parallelism of a statement. 
Section 6 describes a method for extending the power of data dependence to 
control statements by the process of IF conuersion. Finally, Section 7 details the 
current state of PFC and our plans for its continued development. 

2. FUNDAMENTALS OF FORTRAN 8x 

It is difficult to describe any language whose definition is still evolving, much 
less write a language translator for it, but we need some language as the basis for 
our discussion. In this section, we describe a potential version of FORTRAN 8x, 
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one that is similar to the version presently under consideration by the ANSI 
X3J3 committee. Our version extends 1977 ANSI FORTRAN to include the 
proposed features for support of array processing and most of the proposed 
control structures. 

2.1 Array Assignment 

Vectors and arrays may be treated as aggregates in the assignment statement. 
Suppose X and Y are two arrays of the same dimension, then 

X=Y 

copies Y into X, element by element. In other words, this assignment is equivalent 
to 

X(1) = Y(1) 
X(2) = Y(2) 

X(N) = Y(N). 

Scalar quantities may be mixed with vector quantities using the convention that 
a scalar is expanded to a vector of the appropriate dimensions before operations 
are performed. Thus 

x = x + 5.0 

adds the constant 5.0 to every element of array X. 
Array assignments in FORTRAN 8x are viewed as being executed simultane- 

ously; that is, the assignment must be treated so that all input operands are 
fetched before any output values are stored. For instance, consider 

x = X/X(2). 

Even though the value of X(2) is changed by this statement, the original value 
of X(2) is used throughout, so that the result is the same as 

T = X(2) 
X(1) = X(1)/T 
X(2) = X(2)/T 

X(N) = X(N)/T. 

This is an important semantic distinction that has a significant impact on the 
translation process. 

2.2 Array Sections 

Sections of arrays, including individual rows and columns, may be assigned using 
triplet notation. Suppose A and B are two-dimensional arrays whose subscripts 
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range from 1 to 100 in each dimension; then 

A(1 : 100, I) = B(J, 1: 100) 

assigns the Jth row of B to the Ith column of A. 
One may also define a range of iteration for vector assignment that is smaller 

than a whole row or column. Suppose you wish to assign the first M elements of 
the Jth row of B to the first M elements of the Ith column of A. In FORTRAN 
8x, the following assignment could be used: 

A(l:M, I) = B(J, 1:M). 

This statement has the effect of the assignments: 

A(l, I) = B(J, 1) 
A(2, I) = B(J, 2) 

A(M, I) = B(J, M) 

even though M might contain a value much smaller than the actual upper bound 
of these arrays. 

The term “triplet” seems to imply that the iteration range specifications such 
as the one above should have three components. Indeed, the third component, 
when it appears, specifies a “stride” for the index vector in that subscript position. 
For example, if we had wished to assign the first M elements of the Jth row of B 
to the first M elements of the Ith column of A in odd subscript positions, the 
following assignment could have been used. 

A(1 : M*2-1: 2, I) = B(J, 1: M). 

The triplet notation is also useful in dealing with operations involving shifted 
sections. The assignment 

A(1, l:M) = B(l:M, J) + C(1, 3:M + 2) 

has the effect 

A(1, 1) = B(l, J) + C(1, 3) 
A(1, 2) = B(2, J) + C(1, 4) 

A(1, M) = B(M, J) + C(1, M + 2). 

2.3 Array identification 

Useful as it is, the triplet notation provides no way to skip through elements of 
a rotated array section, like the diagonal. To do that, one must use the IDENTIFY 
statement, which allows an array name to be mapped onto an existing array. For 
example, 

IDENTIFY /l:M/ D(1) = C(1, I + 1) 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987. 
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defines the name D, dimensioned from 1 to M, to be the superdiagonal of C. 
Thus 

has the effect 

D = A(l:M, J) 

C(l, 2) = A(l, J) 
C(2, 3) = A(2, J) 

C(M, M + 1) = A(M, J). 

It is important to note that D has no storage of its own; it is merely a pseudonym 
for a subset of the storage assigned to C. 

2.4 Conditional Assignment 

The FORTRAN 8x WHERE statement will permit an array assignment to be 
controlled by a conditional masking array. For example, 

WHERE(A .GT. 0.0) A = A + B 

specifies that the vector sum of A and B be formed, but that stores back to A 
take place only in positions where A was originally greater than zero. The 
semantics of this statement require that it behave as if only components 
corresponding to the locations where the controlling condition is true are involved 
in the computation. 

In the special case of statements like 

WHERE(A .NE. 0.0) B = B/A 

the semantics require that divide checks arising as a result of evaluating the 
right-hand side not affect the behavior of the program-the code must hide the 
error from the user. In other words, any error side-effects that might occur as a 
result of evaluating the right-hand side in positions where the controlling vector 
is false are ignored. 

2.5 Library Functions 

Mathematical library functions, such as SQRT and SIN, are extended on an 
elementwise basis to vectors and arrays. In addition, new intrinsic functions are 
provided, such as inner matrix product (DOTPRODUCT) and transpose 
(TRANSPOSE). The special function 

SEQ(L N) 

returns an index vector from 1 to N. Reduction functions, much like those in 
APL, are also provided. For example, SUM applied to a vector returns the sum 
of all elements in that vector. 

2.6 User-Defined Subprograms 

There are several enhancements to the handling of user-defined subroutines and 
functions. First, arrays, even identified arrays, may be passed as parameters to 
subroutines. Second, an array may be returned as the value of a function. 
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3. THE TRANSLATION PROCESS 

Now we are ready to describe, in an idealized way, the process of translating a 
FORTRAN program into FORTRAN 8x. In so doing, we will illustrate some 
important aspects of the problem. 

Suppose the translator is presented with the following FORTRAN fragment: 

DO 20 I = 1,100 
Sl KI = I 

DO 10 J = 1,300,3 

: 
KI = KI + 2 

S: 
U(J) = U(J) * W(K1) 
V(J + 3) = V(J) + W(K1) 

10 CONTINUE 
20 CONTINUE 

The goal is to convert statements Ss and S’q to vector assignments, removing 
them from the innermost loop. That will be possible if there is no semantic 
difference between executing them in a sequential loop and executing them as 
vector statements. Consider a somewhat simpler case: 

DO 10 I = 1,100 
X(1) = X(1) + Y(1) 

10 CONTINUE 

If we are to convert this to the vector assignment 

X(1: 100) = X(1 : 100) + Y(l: 100) 

we must be sure that no semantic difference arises. Specifically, a vector assign- 
ment requires that the right-hand side be fetched before any stores occur on the 
left. Thus, it can use only old values of its input operands. If the sequential loop 
computes a value on one iteration and uses it on a later iteration, it is not 
semantically equivalent to a vector statement. The following fragment 

DO 10 I = 1,100 
X(1 + 1) = X(1) + Y(1) 

10 CONTINUE 

cannot be correctly converted to the vector assignment 

X(2:101) = X(1:100) + Y(l:lOO) 

because each iteration after the first uses a value computed on the previ- 
ous iteration. The vector assignment would use only old values of X. An 
iterated, statement that depends upon itself in the manner shown is called a 
recurrence. 

In order to distinguish the two cases above, the translator must perform a 
precise test to determine whether or not a statement depends upon itself-that 
is, whether or not it uses a value that it has computed on some previous iteration. 
Details of this dependence test will be provided in the next section; for now, it is 
enough to know that certain program transformations are required to make the 
test possible. 
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The first of these, DO-loop normalization, transforms loops so that the loop 
induction variables iterate from 1 to some upper bound by increments of 1. 
Sometimes new induction variables must be introduced to accomplish this. 
Within the loop, every reference to the old loop induction variable is replaced by 
an expression in the new induction variable. The effect of DO-loop normalization 
on our example is 

DO 20 I = 1,100 
KI = I 
DO 1Oj = 1,100 

KI = KI + 2 
U(3*j-2)=U(3*j-2)*W(KI) 
V(3*j+l)=V(3*j-2)+W(KI) 

10 CONTINUE 
ss J = 301 

20 CONTINUE 

Note that the new variable j (written as a lowercase letter to signify that it has 
been introduced by the translator) is now the inner loop induction variable and 
that an assignment Ss has been introduced to define the previous induction 
variable on exit from the loop. In this form, the upper bound of the loop is 
precisely the number of times the loop will be executed. 

A major goal of this sequence of normalizing transformations is to convert all 
subscripts to linear functions of loop induction variables. To accomplish this 
conversion, uses of auxiliary induction variables, such as KI in our example, 
must be replaced. This transformation, called induction uaridde substitution [36], 
replaces statements that increment auxiliary induction variables with statements 
that compute them directly using normal loop induction variables and loop 
constants. The effect in our example is as follows: 

DO201=1,100 
KI = I 
DO 1Oj = 1,100 

U(3*j-2)=U(3*j-2)*W(KI+2*j) 
V(3:j+l)=V(3*j-2)+W(KI+2:j) 

10 CONTINUE 
KI = KI + 200 
J = 301 

20 CONTINUE 

Here the computation of KI has been removed from the loop and all references 
to KI have been replaced by references to the initial value of KI plus the sum 
total of increments that can occur by the relevant iteration, expressed as a 
function of j. At the end of the loop, an assignment updates the value of KI by 
the aggregate total of all increments in the loop. Note that since it attempts to 
replace simple additions with multiplications, induction variable substitution is, 
in a sense, an inverse of the classical optimization technique operator strength 
reduction [2, 81. 

The final transformation in preparation for dependence testing is expression 
folding, which substitutes integer expressions and constants forward into 
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subscripts, with simplification where possible. The result in our example is 

DO 20 I = 1,100 
DO 1Oj = 1,100 

S3 U(3*j-2)=U(3*j-2)*W(I+2*j) 
S, V(3*j+l)=V(3*j-2)+W(I+2*j) 

10 CONTINUE 

: 
KI = I + 200 
J = 301 

20 CONTINUE 

In this example, the first assignment to KI in the outer loop has been removed 
and references to KI replaced by the right-hand side (I) in statements &, S4, 
and S,j. It should be noted that statements 2% and S, could now be removed from 
the loop by forward substitution; this is, in fact, done in the actual translator. 

Once the subscripts have been transformed, a standard data flow analysis 
phase can be applied to build the data flow graph for the whole program. This 
graph can be used to propagate constants throughout the program and to 
recognize dead statements, that is, statements whose output will never be used. 
In the example above, suppose that KI and J are both dead after the code segment 
shown. Then all assignments of those variables will be deleted, as shown below. 

DO 20 I = 1,100 
DOlOj=l,lOO 

SS U(3*j-2)=U(3*j-2)*W(I+2*j) 
& V(3:j+l)=V(3*j-2)+W(I+2*j) 

10 CONTINUE 
20 CONTINUE 

The point of this complex assortment of transformations is to attempt to convert 
all subscripts to a canonical form: linear functions of the DO loop induction 
variables. This form makes it possible to apply a powerful and precise test for 
interstatement dependence. In the example above, we have succeeded in putting 
all subscripts into the desired form, so we can use precise tests to determine what 
dependences exist among the statements in the inner loop. 

Once the dependences have been identified, we are ready for vector code 
generation. Using dependence information, the translator determines which of 
the remaining statements does not depend on itself. As it happens, statement S3 
does not depend upon itself, while statement S4 does (and hence represents a 
recurrence). Therefore, statement Ss is converted to a vector assignment, while 
statement S4 is left in a sequential loop by itself. 

DO 20 I = 1,100 
5-3 U(1:298:3) = U(1:298:3) * W(I- 2:1+ 200:2) 

DO 1Oj = 1,100 
84 y(3*j+l)=V(3*j-2)+W(I+2*j) 

10 CONTINUE 
20 CONTINUE 

Figure 3 gives an overview of the translation process as implemented in PFC. 
The scanner-parser phase converts the input program to an abstract syntax tree 
that is used as the intermediate form throughout the translation. The pretty 
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----+ Scanner- 
Parser 1 

tree 
----+ Vector 

Translator 
Pretty L Printer 

pi-iizq ---+ poiiir 
Fig. 3. Overview of PFC. 

printer can reconstruct a source program from the abstract syntax tree; it is used 
throughout the translator. The vector translation phase consists of three main 
subphases: 

(1) subscript stundurdization, which encompasses all the transformations that 
attempt to put subscripts into canonical form; 

(2) dependence analysis, which builds the interstatement dependence graph; 
(3) parallel code generation, which generates array assignments where possible. 

Each of these will be discussed in more detail. Since the dependence test is 
fundamental to these phases, it is the subject of the next section. 

4. DEPENDENCE ANALYSIS 

Since a statement can be directly vectorized only if it does not depend upon 
itself, the analysis of interstatement dependence is an important part of PFC. In 
this section we formalize the concept of dependence and introduce a precise test 
for interstatement dependence in a single loop. We then extend this concept to 
multiple loops with the concept of layered dependence. 

4.1 Interstatement Dependence 

Informally, a statement Sz depends upon statement S1 if some execution of S2 
uses as input a value created by some previous execution of &. In straight-line 
code, this condition is easy to determine. Since we are interested in determining 
whether a statement depends upon itself and since this can only happen if the 
execution flows from a statement back to itself via a loop, we must be able to 
determine dependence within loops. 

To illustrate the complexity of this problem, consider the following loop: 

DOlOJ=l,N 
X(J) = X(J) + C 

10 CONTINUE 
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The statement in this loop does not depend on itself because the input variable 
X(J) always refers to the old value at that location. By contrast, the similar loop 

DOlOJ=l,N-1 
X(J + 1) = X(J) + C 

10 CONTINUE 

forms a recurrence and cannot be directly converted to vector form. The input 
on any iteration i + 1 is always the value of X computed on iteration i. As a 
result, the direct vector analog will not be equivalent. 

In order to understand intrastatement dependence, we need to examine the 
generalized form of a (possibly dependent) single statement within a loop. 

DOlOi=l,N 
(*) W(i)), = WXW))) 

10 CONTINUE 

Here f and g are arbitrary subscript expressions, and F is some expression 
involving its input parameter. 

Definition. Statement (*) depends upon itself if and only if there exist integers 
ii, i2 such that 1 5 iI C i 2 I N and f (il) = g(i2). 

The integers iI and i2 represent separate iterations of the i loop. On iteration 
il, statement (*) computes a value that is subsequently used on iteration iz. To 
put it another way, statement (*) depends upon itself if and only if the dependence 
equation 

f(x) - g(y) = 0 

has integer solutions in the region depicted in Figure 4. 
If f and g are permitted to be arbitrary functions of the DO loop induction 

variable, then determining whether statement (*) depends upon itself is an 
extremely difficult problem. The problem becomes much more tractable when f 
and g are restricted to be linear functions of the induction variable, that is, 

f(i) = ao + aIi 
g(i) = bO + b,i. 

This is by far the most common case encountered in practice. With this restric- 
tion, the dependence equation has solutions if and only if 

alx - bly = bO - a+ 

In order for x and y to be viable solutions to the dependence equation, they must 
be integers. As a result, we are seeking integer solutions to an equation with 
integer coefficients. Almost any text on number theory (e.g., [14]) will include 
the following theorem on Diophantine equations. 

THEOREM 1. The linear Diophantine equation ax + by = n bus a solution if and 
only if gcd(a, b) 1 n. 
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Fig. 4. The region of interest. 

Immediately following from the above theorem is a necessary requirement for 
dependence: 

COROLLARY 1 (GCD TEST). Statement (*) with f(i) = a~ + ali and g(i) = 
b. + bli depends upon itself only if gcd&, bJ 1 b0 - u,,. 

Note that the gcd test is only necessary for dependence, because an integer 
solution to the dependence equation is not sufficient to guarantee self-depend- 
ence. For that, the solution must exist within the region depicted in Figure 4. 

Although the gcd test is interesting, it is of limited usefulness, because the 
most common case by far is that in which the gcd of al and bl is 1. A more 
effective test can be developed by examining the effects of region constraints on 
the existence of solutions. The mathematics of determining integer solutions to 
a Diophantine equation within a restricted region can lead to extremely expensive 
tests for dependence. As a result, it is more useful to investigate the real solutions 
to the dependence equation in the region of interest. 

Consider the real solutions of 

in the region R: 

hh, Y) = f (4 - g(y) = 0 

lrx<N-1 21ysN nzSy-1. 

A real solution to the dependence equation exists in R if and only if the level 
curve at 0 for h passes through R, as depicted in Figure 5. If h meets fairly general 
continuity conditions, the intermediate value theorem guarantees that h has 
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Fig. 5. Real solutions in R. 

zeros in R if and only if there exist points (x1, yl) and (x2, yz) in R such that 

e1, Yl) 5 0 5 h(x2, Y2). 

The following theorem summarizes this observation. 

THEOREM 2. If h(x, y) is continuous in R, then there exists a solution to 
h(x, y) = 0 in R if and only if 

min h(x, y) I 0 5 max h(x, y). 
R R 

COROLLARY 2. If f(x) and g(y) are continuous, then statement (*) depends 
upon itself only if 

mjn (f (4 - g(y)) 5 0 5 y (f (4 - g(y)). 

Once again, this condition is necessary, but not sufficient; the existence of real 
solutions in R does not imply the existence of integer solutions. As a result, the 
requirements of Corollary 2 may be satisfied by a statement that is not self- 
dependent. 

Corollary 2 is useful only if there is a fast way to find the maximum and 
minimum on a region. Such a way is provided by the following theorem, adapted 
from a result due to Banerjee [6]. 

THEOREM 3. If f (x) = a0 + alx and g( y) = b. + bIy, then 

max (f(x) - g(y)) = Q + al - b0 - 2bI + (a: - bI)+(N - 2) 
R 

rn? (f(x) - g(y)) = a0 + al - b0 - 2bl - (a; - b;)+(N - 2) 
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where the superscript notation is defined by the following: 

Definition. If t denotes a real number, then the positive part t+ and the negative 
part t- of t are defined as 

t+= t, 

i 

if tZ0 
0, if t<O 

t- = -t, if t I 0 
0, if t > 0. 

Thus t+ L 0, t- r 0, and t = t+ - t-. The proof of a multidimensional variant of 
Theorem 3 is given in the Appendix. 

Theorem 2 and Theorem 3 establish the following result. 

COROLLARY 3 (BANERJEE INEQUALITY). If f (x) = a0 + alx and g( y) = b. + bly 
then statement (*) depends on itself only if 

-bl - (Ui + bl)+(N - 2) I bo + bl - & - al I -bl + (a: - bJ+(N - 2). 

PROOF. Immediate from Corollary 2 and Theorem 3 with subtraction of 

a0 + al - b0 - bl 

from each side of the inequalities in Corollary 2. 0 

Corollaries 1 and 3 comprise a necessary test for self-dependence. This test 
may be expressed algorithmically as follows: 

(1) Determine whether f and g are linear. If they are, then compute a,,, bO, al, 
and bl. 

(2) If either (a) gcd(al, bl) does not divide b0 - a0 or (b) Banerjee’s inequality 
does not hold, then the statement does not depend upon itself. Otherwise, 
assume it does (even though it may not). 

Testing for self-dependence in the presence of multiple loops is more 
complicated. Before developing that test, let us examine some applications of 
dependence. 

4.2 Dependence Graphs and Their Application 

While determining whether a statement depends upon itself or not is useful, it is 
clearly a simplified case of a more general phenomenon. In general, a statement 
may depend upon itself indirectly through a chain of zero (the direct case) or 
more statements, as the following example illustrates: 

DO 10 I = 1,100 

: 
T(I) = A(I) * B(I) 

SZ 
S(1) = S(1) + T(1) 
A(1 + 1) = S(1) + C(1) 

10 CONTINUE 

Although statements S1, Sz, and S8 all depend upon themselves indirectly, no 
statement depends directly upon itself. In order to uncover the recurrence, it is 
necessary to first uncover the individual statement-to-statement dependences. 
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Kuck and others at the University of Illinois [18, 321 have defined three types 
of dependence that can hold between statements. 

Definition. If control flow within a program can reach statement Sp after 
passing through S1, then Sp depends on S1, written S1 A Sz, if 

(1) SZ uses the output of Si. This type of dependence is known as true dependence 
(denoted A), and is illustrated by the following 

s1: x= 
6 

sp: = x. $ 

(2) S1 might wrongly use the output of Sz if they were reversed in order. This 
type of dependence is called antidependence (denoted ?$ and is illustrated by 
the following: 

S1: =x 
b 

sz: x = $ 

(3) SZ recomputes the output of S,; thus, if they were reversed, later statements 
might wrongly use the output of Si. This type of dependence is termed output 
dependence (denoted So) and is illustrated by 

s1: x= 
a0 

sp: x= 2 

Thus A = 6 + f + 6’, where addition means set union. 

All three types of dependence must be considered when detecting recurrences 
that inhibit vectorization. Note that dependence, in this sense, denotes a relation 
between two statements that captures the order in which they must be executed. 
This concept of dependence differs from that normally encountered in data flow 
analysis, where dependence implies that one statement must be present for 
another to receive the correct values. Antidependence and output dependence 
are meaningless in such a setting, since they only fix the order of statements. In 
particular, we would not wish to use either of these pseudodependences (as we 
will henceforth call them) in the dead statement eliminator; it would be ridiculous 
to refuse to eliminate a particular statement because some useful statement 
recomputes its output and hence “depends” on it. 

In any case, the common element among these types of dependence is the use 
of the same memory location in two statements (or in two different executions 
of the same statement). The actual type of dependence created by a common use 
is determined by which statement (or statements) defines the location and which 
statement uses the location. As a result, all three types of dependence can be 
decided by the same test. The only change necessary is to switch the locations 
from which the subscript functions f and g are taken. We will therefore discuss 
only the test for true dependence between two statements in a loop, with the 
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understanding that the same methods are easily extended to all types of 
dependence. 

In contrast to the case of self-dependence, there are two completely separate 
ways in which dependence can arise between different statements. One statement 
may store into a location on one iteration of the loop; the other statement may 
fetch from that location on a later iteration of the loop. The dependence of 
statement S1 on statement S3 in the previous example illustrates this type of 
dependence, known as loop carried dependence. The other possibility is that one 
statement may store into a location on an iteration of the loop; on the same 
iteration another statement may fetch from that location. The dependence of 
statement Sz on statement S1 illustrates this type of dependence, known as loop 
independent dependence. In order for one statement to have a true dependence 
upon another, it is necessary that the statement defining the common memory 
location precede (in terms of execution) the statement using that location. Since 
these two types of dependence completely describe all possible ways that a 
definition can precede a use, these two types of dependence completely encap- 
sulate all possible data dependences. 

Before providing a more formal definition of these types of dependence, it is 
convenient to introduce some notation. 

Definition. Let & and Sz be two statements that appear in the same DO-loop. 
We say that Sz follows Si, or S, > S1 if S1 appears first in the loop and S1 # &. 

Consider two statements S1 and S2, both contained in one loop with loop 
induction variable i. Suppose S1 is of the form 

2%: X( f (i)) = F(. . .) 

where f is a subscript expression and F is an expression, and suppose Sz is of the 
form 

Sz: A = G(X(g(i))) 

where A is an arbitrary variable (possibly subscripted), G is an expression 
involving X(g(i)), and g is a subscript expression. Then the following definitions 
are obvious from the above discussion. 

Definition. Sz has a loop carried dependence on Si (denoted S1 6 Sz) if there 
exist il and i2 such that 1 I il < i2 d N and f (iI) = g(h). 

Definition. Sz has a loop independent dependence on S1 (denoted S1 6, &) if 
there exists some iteration i, 1 I i I N, such that Sz > S1 and f(i) = g(i). 

Note that self-dependence is merely a special case of loop carried dependence. 
It is true in the case of self-dependence (as in the case of all loop carried 
dependences) that the dependence arises because of the iteration of a loop. In 
particular, there is no way in which a single statement can first define and later 
use a value unless it is contained within a loop. Loop independent dependences, 
on the other hand, arise not because of loop iterations, but because of the relative 
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Fig. 6. A sample dependence graph D. 

position of two statements within the loop. These dependences do not “cross” 
loop iterations. A loop carried dependence cannot be limited to a single iteration 
by its very nature. 

Since the primary function of the translator is to detect recurrences, it is useful 
to see how the concept of dependence aids in that function. In order to apply 
dependence analysis, it is necessary to 

(1) test each pair of statements for dependence (true, anti, or output), building 
a dependence relation D; 

(2) compute the transitive closure II+ of the dependence relation; 
(3) execute each statement that does not depend upon itself in II+ in parallel; 

all others are part of a recurrence. 

There is a small wrinkle, however. The parallel statements must be executed 
in an order that is consistent with the dependence relation D+. To view it in the 
manner suggested by Kuck [18], consider D as a graph in which individual 
statements are nodes and in which pairs in the relation are represented by 
directed edges. Figure 6 contains an example of such a graph. Cycles in this graph 
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Fig. 7. The derived dependence graph for r-blocks. 

represent recurrences. If each cycle and each single statement not part of a cycle 
are reduced to a single node (called a r-block), then the dependence graph D’ 
derived from this transformation on D is acyclic (see Figure 7). Using a topological 
sort [16], we can then generate code for each r-block in an order that preserves 
the dependence relation D’. 

As an example, consider the program below. 

DO 10 I = 1,99 
Sl X(1) = I 
SZ B(1) = 100-I 

10 CONTINUE 
DO 20 I = 1,99 

:I 
AU) = WWI)) 
X(1 + 1) = G(B(1)) 

20 CONTINUE 

Figure 8 depicts the dependences among the numbered statements in this 
program, ignoring dependences on the DO statements. Since there are no 
cycles, all the statements may be executed in vector, but we must be careful 
to choose an order that preserves dependences. In particular, S4 must come 
before S3 in the final code. Choosing the order (S1, Sz, Sd, SJ, the result is 
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Fig. 8. Dependences in the example program. 

the FORTRAN 8x program 

X(1:99) = SEQ(l, 99, 1) 
B(l: 99) = SEQ(99, 1, -1) 
X(2:100) = G(B(1:99)) 
A(1:99) = F(X(1:99)) 

which is fully consistent with the original sequential semantics. 
Currently, the translator leaves a recurrence coded as a sequential DO-loop. 

4.3 Dependence in Multiple Loops 

When extending the definition of dependence to multiple loops, it is convenient 
to precisely pinpoint the loop that creates a loop carried dependence. An example 
will illustrate this concept. 

DO 100 i = 1,100 
DO 9Oj = 1,100 

DO 30 k = 1,100 
S1 X(i, j + 1, k) = A(i, j, k) + 10 

30 CONTINUE 
DO 80 1= 1.50 

SZ A(i + 1, j,‘l) = X(i, j, 1) + 5 
80 CONTINUE 

CONTINUE 
l”o”o CONTINUE 

First, statements S, and Sz depend upon each other. On every iteration of the j 
loop other than the first, Sp uses a value that was computed on the previous 
iteration of the j loop by Sr. Similarly, on every iteration of the i loop other than 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987. 



510 l R. Allen and K. Kennedy 

the first, S1 uses a value computed on the previous iteration by Sp. Neither the 
k loop nor the 1 loop can carry a dependence between the statements, because 
two statements must be nested within a loop in order for it to carry a dependence 
between them. 

It is important to recognize which loop carries a particular dependence if we 
are to do a good job of translation. This is aptly illustrated by the example above, 
because S1 and Sz may be executed in parallel in two dimensions even though 
they form a global recurrence. If the outermost loop is left sequential we get 

DO 100 i = 1,100 
X(i, 2 : 101,l: 100) = A(i, 1: 100,l: 100) + 10 
A(i+1,1:100,1:50)=X(i,1:100,1:50)+5 

100 CONTINUE 

Clearly, this partial vectorization is desirable. 
The test for loop carried dependence presented earlier can be generalized to 

detect which loop carries a dependence by the following: 
Let f and g be subscript mappings 

where 2 is the set of all integers, nl is the number of loops containing statement 
Sl 

Sl: Hfh, x2, . . . , xn,)) = F( 1 

n2 is the number of loops containing statement S2 

Sp: A = G(X(g(x,, . . . , x,)) 

and m is the number of subscripts for array X. The symbol F( ) denotes an 
arbitrary left-hand side. We use xl, x2, . . . to denote the induction variables for 
the loops, with x1 being the induction variable for the outermost loop. In general, 
we will number the loops from the outermost to the innermost. The upper bound 
of the ith loop surrounding & is assumed to be Mi; the upper bound of the ith 
loop surrounding S2 is assumed to be Ni; hence Mi = Ni for 1 I i I n, where n is 
the number of common loops surrounding the two statements. 

Definition. Statement S2 depends on & with respect to carrier k (k I n), 
written Si bk S2, if there exist (il, h, . . . , i&, (jk+l, j,+2 , . . . ,jn,), (b+l, lk+2, . . . , 

1,), and integers 5;, 5; in the following regions: 

1 I iq s Np V, s.t. 1 5 q and q < k 
lsjqsMp V, s.t. k < q and q 5 nl 
1 5 lp I N4 V, s.t. k < q and q 5 n2 
1 5 s; < {2 I Nk 

such that the following equation holds: 

f (il, i2, . . . , ik-1, rl;, jk+l, . . . , jnI) = dil, i2, . . . , ik-1, r22, ik+l, . . . , 1%). 

Intuitively, we test for dependence with respect to carrier loop k by holding the 
outer loop indices constant and letting the inner loop indices run free. Note that 
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the same definition can be used for antidependence and output dependence as 
well. 

Interstatement dependence can now be defined in terms of dependence with 
respect to a particular carrier. 

Definition. S2 depends directly on Si, & A Sz, if and only if there exists some 
k L 1 such that S1 8k Sz. 

If we view dependence as a relation, then 

A = jl ata, 

where addition is interpreted as set union. 
Now we are ready for the main result of this section-testing for dependence 

on a particular carrier. 

THEOREM 4. If f(xl, . . . ,x,*) = a0 + )=?A:, aixi, g(xl, . . . , 3%) = bo + z?& bixi, 
and S1 and Sz are of the form 

Sl: X(f(xl, . . . , x,,)) = F(. . .) 
&: A = G(Xkh . . . , +J) 

and are contained in n common loops (assumed normalized), n r k, and the upper 
bounds of the loops surrounding S1 are Mi and the upper bounds of the loops 
surrounding Sz are Ni (M; = Ni for i 5 n), then S1 & Sz only if 

(a) gcd test: 

gcdbl - h, a2 - b2, . . . , ak-1 - bk-1, ak, . . . , a,,, bk, . . . , b,) 1 bo - a0 

(b) Banerjee inequality: 
k-l 

-bk - zl (ai - bi)-(Ni - 1) - (a; + bk)+(Nk - 2) 

- i$, af(M - 1) - i=!+l b:(Ni - 1) 

5 ,,zo bi - a80 ai 

b-1 

C --bk + E (ai - bi)+(Ni - 1) + (ai - bk)+(Nk - 2) - 
i=l 

+ is!+l at(Mi - 1) + 5 b;(Ni - 1). 
i=k+l 

The long but straightforward proof is given in the Appendix. 
This theorem is an adaptation of a result by Banerjee. The gcd test has been 

slightly sharpened over Banerjee’s and the test has been formulated as a test for 
dependence with respect to a specific carrier k. 
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When the theory of loop carried dependence is extended to account for multiple 
loops, it is convenient to determine which loop “creates” the dependence. The 
previous theorem does exactly that. Extending loop independent dependence to 
multiple loops is much simpler, since such dependences do not arise from the 
iteration of loops, but from the relative statement position. The gcd test and 
Banerjee’s inequality can be modified to test for loop independent dependences 
as follows. 

THEOREM 5. Iff&, . . . , x,,) = h + C& aixi, g(q, . . . , LX+,) = bo + CC, bixi, 
and S1 and S2 are of the form 

Sl: X(f(xl, . . . , x,,)) = F(. . .) 

Sz: A = G(XMa, . . . , x,))) 

and are contained in n common loops (assumed normalized), and the upper bounds 
of the loops surrounding S1 are Mi and the upper bounds of the loops surrounding 
5’2 are Ni (Mi = Ni for i I n), then S1 6, Sz(& has a loop independent dependence 
on &) only if S2 follows & and 

(a) gcd test: 

gcd(al - bl, a2 - by, . . . , a, - b,, a,+~, . . . , a,,, b,+~, . . . , b,) I bo - a0 

(b) Banerjee inequality: 

-il (ai - bi)-(Ni - 1) - 3 a;(Mi - 1) - z bT(Ni - 1) 
i=n+l i=n+l 

5 2 bi - 2 ai 
i=O i=O 

5 i (ai - bi)+(Ni - 1) + 2 a’(Mi - 1) + z bf(Ni - 1). 
i=l i=n+l i=n+l 

4.4 The Depth of a Dependence 

The test for dependence given in the previous section leads in a natural way to 
the concept of dependence depth. Recall that Sz depends directly on S1 (& A Sz) 
if and only if there exists k > 0 such that S, Bk Sz. Clearly, if we disregard some 
of the outer loops, holding them constant, the dependence may not exist. 

Therefore, let us introduce the concept of depth into our theory of dependence. 

Definition. We say that Sz depends on S1 at depth d (denoted S1 & S,), if 
there exists a k 2 d such that S1 & &. In other words, 

& = & &z. 

Note that in this scheme, a loop independent dependence is a dependence of 
infinite depth. The reason for this will become clear shortly. 

Definition. For statements S1 and Sp, T,J’(&, S,), the nesting level of the direct 
dependence of S2 on Si, is the maximum depth at which the dependence exists, 
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that is, 

90(&, S2) = 
maxllz 2 1 1 S1 & S2J, if S1 A S2 
0 , otherwise. 

LEMMAS 

(a) If dl 2 d2 then 54 Add, 5’2 + S1 Adz &. 
(b) If S1 A S2 and 7 = q”(S1, SZ), then Sl J&S2 and S1 A,+, SP. 

PROOF. Obvious. Clearly, v”(S1, S2) is easy to compute for any pair of 
statements. q 

It is customary to view dependence as a transitive relation. That is, if SZ 
depends on Si, and Ss depends on S2, then Ss depends on Si , albeit indirectly. 
Henceforth, we will say that S2 depends on S, if S1 A' S2 where A+ is the 
transitive closure of A, that is, 

A+ = A + A2 + A3 + ..-. 

In other words, Si A+ S2 if there exist statements To, Z’,, . . . , T,, (n L 1) such 
that 

and 

To = S1 
T,, = S2 

231 = T,, A Tl A T2 A . . . A T,, = Sp. 

We shall refer to the sequence (To, T,, . . . , T,) as a path in the dependence 
graph. 

It is also possible to extend the notion of loop carried dependence by taking 
the transitive closure. That is, Si Ai S2 if there exists a path To, Tl, . . . , T,, 
(n L 1) such that 

s1 = T,, a& Tl L&j . . . Ad T,, = S2. 

Next we extend q” to dependence paths. 

Definition. Let P = (To, T,, . . . , T,,) be a path in the dependence graph; in 
other words, To A Tl A . - . A Tn. The nesting level of P, q’(P), is the maximum 
depth at which all the dependences in the path still exist. 

q’(P) = max(d Z 11 Ti Ad Ti+l Vi, 0 5 i 5 n - 11. 

LEMMA 3. If P = (To, T,, . . . , T,,), then v’(P) = min(v’(Ti, Ti+l), 0 5 i 5 
n - 1). 

PROOF. Let T = min(o’(Ti, Ti+l), 0 s i I n - 1). By Lemma 2, all of the 
dependences Ti A, Ti+, exist, while at least one such dependence, the minimum, 
does not exist at level 7 + 1. Cl 

Finally, we extend the concept of nesting level to arbitrary pairs of statements. 
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Definition. For arbitrary statements Si and Sz, q(S1, Sz), the nesting level of 
the dependence, is the maximum depth d at which there exists a path (2’0, 2’1, 
. . . , T,,) such that S1 = To & Tl & . . . Ad T,, = Sz, that is, 

rl(Sl, Sz) = 
max(d 3 1 ] Si AZ Sa), if S1 A+ Sz 
0 
, otherwise. 

Note that we must distinguish q”(&, Ss), the depth of a direct dependence, and 
a(&, Sz), the depth of a dependence. This is because it is possible that there 
exists a dependence path from S1 to Sz at a depth greater than that of the direct 
dependence. In other words, q(S1, S,) L v’(&, S2) and the inequality may be 
strict. 

THEOREM 6. If 2% A+ Sz, s(S,, Sz) = ma~(~~(P) ] P a dependence path from 
s1 to S2). 

PROOF. Let PO = (Uo, VI, . . . , U,,,) be the path from Si to Sz with maximum 
nesting level, and let 7 = ,I’(Po). Clearly S1 = UO A, U1 A, - -. A, U, = S’s, so 

?I(&, S2) 3 7. 

Suppose q(S,, S,) > 7. Then there exists a path P = (To, Tl, . . . , T”) such that 

& = T,, & Tl L& - . - & T,, = S2 

where d > 7. But then so(P) = d > T, contradicting the maximality of o(Po). Cl 

Lemma 3 and Theorem 6 establish that the computation of T(&, S2) for each 
pair of statements in the program is just a shortest path problem with min 
replacing + as the operation used to compose costs along a path (Lemma 3) and 
max replacing min as the operation to compute the resulting cost at a vertex 
where two paths join (Theorem 6). Hence, Kleene’s algorithm can be used to 
compute q(Si, S2) for each pair of statements in time proportional to the cube 
of the number of statements [l]. 

The concept of depth of a dependence is useful because it permits partial 
vectorization. 

Definition. Consider a statement S that depends upon itself (S A+ S). The 
parallelism index of S, p(S) is defined 

P(S) = m - ds, S) 

where m is the number of loops containing S. 

Observe that if p(S) > 0, then S may be executed in parallel in the innermost 
p(S) loops surrounding it. 

As an example, consider the multiple loop from Section 4.3. 

DO 100 i = 1,100 
DO90j=l,lOO 

DO 30 k = 1,100 
S, X(i, j + 1, k) = A(i, j, k) + 10 

30 CONTINUE 
DO 80 I- 1,50 

S* A(i + 1, j, 1) = X(i, j, I) + 5 
80 CONTINUE 
90 CONTINUE 

100 CONTINUE 
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In this loop S1 A Sz and Sp A Si; however, q(Si, SZ) = 2, while v(Sz, Si) = 1. 
From the definitions of 9 and p, we have q(Si, Si) = v(Sp, Sz) = 1 and p(S) = 
~(57~) = 2. Thus both inner loops surrounding each statement may be run in 
vector. The translated program would be 

DO 100 i = 1,100 
X(i, 2101, 1:lOO) = A(i, l:lOO, 1:lOO) + 10 
A(i + 1, l:lOO, 1:50) = X(i, l:lOO, 1:50) + 5 

100 CONTINUE 

This is the same result that was obtained in Section 4.3. 
The depth of a dependence represents the number of loops that, if iterated 

sequentially, will guarantee that the dependence is satisfied. That is, a level one 
dependence will be preserved so long as the outer loop is iterated sequentially, 
regardless of what is done to inner loops or to statement order within the loop. 
In this context, the depth of a loop independent dependence is correct as infinity, 
since it is impossible to guarantee that a loop independent dependence is satisfied 
by any iteration of loops. Rather, relative statement order preserves those 
dependences, regardless of the iteration of the surrounding loops. Although there 
exist infinite level dependences, 1 (S, S) can never be greater than the number of 
loops surrounding statement S. The reason is very simple; any path that has S 
as both start and end must contain a loop carried dependence, because loop 
independent dependences are always directed forward. Therefore, p(S) is always 
nonnegative. 

The next section presents a general procedure to find p(S) for each S in a 
program and to generate FORTRAN 8x code that runs the innermost p(S) loops 
in parallel. 

5. GENERATION OF VECTOR CODE 

In this section, we demonstrate how the test for dependence can be used to 
generate vector code. This material was briefly introduced in Section 4.4. This 
section generalizes the ideas presented there and discusses several techniques for 
improving the quality of the generated code. 

5.1 The Augmented Dependence Graph 
Earlier in the paper, we discussed the concept of a dependence graph, in which 
each statement was represented by a vertex and each dependence by a directed 
edge from the statement depended upon to the dependent statement (the edges 
indicate the direction in which control must flow). In the augmented depend- 
ence graph, we shall attach auxiliary information to each edge in the form of 
a label. 

Definition. The augmented dependence graph D is an ordered pair (V, E) where 
V, the set of vertices, represents the statements in a program and E, the ‘set of 
edges, represents interstatement dependences. Each edge e E E may be viewed 
as a quadruple (Si, SZ, t, k), where Si and Sz are two statements such that Si Bk 
SZ and where t is the type of the dependence (true, anti-, output). The pair (t, 12) 
is the label of the dependence edge. 
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Note that in this graph it is possible to have multiple edges linking a pair of 
statements. 

Consider, for example, 

DO 100 j = 1,100 
DO 90 i = 1,100 

X(i, j) = WV, 9) 
B(i, j) = G(X(i - 1, j), X(i, j - 1)) 

90 CONTINUE 
100 CONTINUE 

Here S1 & Sp because of input X(i - 1, j), and S1 a2 Sz because of input 
X(i, j - 1). Although we will say that T)(&, S2) = 2, it will be useful to 
distinguish dependences such as these. Therefore multiple edges will be used 
in the augmented dependence graph. 

5.2 Code Generation 

Once the augmented dependence graph is constructed, we proceed to generate 
code for the program as follows: 

(1) Find all the strongly connected regions in the dependence graph. 
(2) Reduce the dependence graph to an acyclic graph by treating each strongly 

connected region as a single node, or r-block. 
(3) Generate code for each r-block in an order consistent with the dependences. 

That is, by using a method similar to topological sort, first generate code for 
blocks that depend on no others, then for blocks that depend only on blocks 
for which code has already been generated, etc. 

This is exactly the method we described in Section 4; however, this time we 
would like to take advantage of dependence depth to get more parallelism. In the 
method above, if a statement does not depend upon itself, we will run all the 
loops that contain it in parallel. But what do we do with a set of statements 
Sl, sz, . . . , S, that form a recurrence? Observe that, even though these state- 
ments all depend upon themselves, some may not depend upon themselves when 
we consider only inner loops. We would like to see what happens if we iterate 
one or more loops sequentially. 

Let us introduce some terminology. 

Definition. Given a dependence graph D = (V, E), the corresponding level-k 
dependence graph Dk is defined as (V, Ek) where 

E/a = I(&, Sz, t, j> E E lj = k). 

In other words, in Dk we consider only those edges at nesting level k or greater. 
In a sense, D represents the relation A, while Dk represents Ak. 

Definition. Let D = (V, E) b e any dependence graph, and let S be a subset 
of V. The restriction of D to S, written D 1 S, is defined as the dependence 
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graph (S, E ( S) where 

E ( S = ( (S1, Sp, t, k) E E ( Si E S and Sz E S). 

We also need some terminology to define the a-block construction. 

Definition. If Dk = (Vk, Ek) is a level-k dependence graph, the corresponding 
level-k a-graph ?T~ is defined as 

rk = (Vi, E;) 

where Vf; = (S ( S E Vk and S 4: SJ U (SC1, SC2, . . . , SC,] where each SCj, 
1 5 j I p, is a maximal strongly connected region in Dk, and 

E; = ((ui, u2) E V; X V; ( S1 E ul, Sz E u2, u1 # u2 and S1 Ak S2]. 

In other words, ak is a directed acyclic graph derived from Dk by collapsing 
each strongly connected region to a single node. Edges in rk are inherited from 
Dk in the natural way. Since 7~ is acyclic, we can construct an ordering on the 
elements of V; that is consistent with the partial ordering E;; this is done using 
topological sort. 

The code generation procedure can generate parallel code for all statements 
that are not part of a recurrence in D k. However, it need not give up on a 
recurrence R in Dk; instead, it can call itself recursively with Dk+l ( R as input. 
That is, it attempts to break the recurrence by increasing the depth of dependence 
considered. 

The procedure codegen (Figure 9), written in a Pascal-like specification lan- 
guage, is an encoding of this method. At the outermost level, this procedure 
would be called as follows: 

codegen(V, 1, D) 

where V is the entire set of statements in the original program and D is the 
dependence graph for the entire program. 

We shall illustrate the operation of the code generation procedure by consid- 
ering a contrived example. 

DO 30 I = 1,100 
Sl X(1) = Y(1) + 10 

DO 20 J = 1,100 
S2 B(J) = A(J, N) 

DO 10 K = 1,50 
SS A(J + 1, K) = B(J) + C(J, K) 

10 CONTINUE 
S* Y(I+ J) = A(J + 1, N) 

20 CONTINUE 
30 CONTINUE 

Let us trace the actions of codegen on this example. The dependences are shown 
in Figure 10. At the top level, statements S2, SI, and S4 are involved in a 
recurrence, so that code generation will be called recursively for these statements 
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procedure codegen(R, k, D); 
jR is the region for which we must generate code ) 
(k is the minimum nesting level of possible parallel loops} 
{D is the dependence graph among statements in R ) 

find the set { 4, & , . . . , S,} of maximal strongly-connected regions in the dependencegraph D restricted 
to R (use Tarjan’s algorithm); 

construct R, from R by reducing each S; to a single node and compute D,, the dependence graph 
naturally induced on R, by D; 

la I xl, Q, . . . , 1~,,,j be the nodes of R. numbered in an order consistent with D, (use topological sort to 
do the numbering); 

foricltomdo 
if si is strongly-connected 
then 

generate a level-k DO statement; 
let Di be the dependence graph consisting of all dependence edges in D which are at leuel k + 1 or 

greater and which are internal to ri; 
codegen(q, k + 1, DJ; 
generate the level-k CONTINUE statement 

else 
generate aparallel statement for ri in p(aJ - k + 1 dimensions, where p(a) is the number of loops 

containing Ki 
Pi 
od 

end 

Fig. 9. Parallel code generation routine. 

one level down. Vector code will be generated for statement & after the loop for 
the first three. 

DO 30 I = 1,100 

code for Sp, Ss, S, 
generated at lower levels 

30 CONTINUE 
St X(1:100) = Y(l:lOO) + 10 

At the next level down, the output dependences of Sz, &, and S4 on themselves, 
which occur because the array being assigned to does not have enough subscripts 
for all the surrounding loops, disappear. Also, the antidependence of S, on &, 
due to the possibility that A(J + 1, K) is the same as A(J + 1, N) on a successive 
iteration of the outer loop, is broken. This leaves the dependence graph shown 
in Figure 11. Statements Sz and 2% still form a recurrence, but code can now be 
generated for statement &. 

DO 30 I = 1,100 
DO 20 J = 1,100 

code for Sz, Ss 
generated at lower levels 

20 CONTINUE 
8 Y(I+ 1:I + 100) = A(2:101, N) 

30 CONTINUE 
& X(1:100) = Y(l:lOO) + 10 
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Fig. 10. Dependence8 for codegen example. 

Fig. 11. Dependence graph at level 2. 

S2 

0-l 
62 40 

S* % kx 
The recurrence involving statements Sp and S3 will be broken at the next level 

down and the final code below will result. 

DO 30 I = 1,100 
DO 20 J = 1,100 

: 
B(J) = A(J, N) 
A(J + 1, 1: 100) = B(J) + C(J, 1: 100) 

20 CONTINUE 
84 Y(I+l:I+lOO)=A(2:101,N) 

30 CONTINUE 
Sl X(1:100) = Y(l:lOO) + 10 

This example is pleasing because it generates vector statements at three different 
levels and because it illustrates, in the case of statement SZ, how parallel code 
generation can also serve as scalar code generation. This happens when we 
generate code that is parallel in 0 dimensions. 

It should be obvious that the code generated by codegen for a statement S is 
vector in the maximal possible number of inner loops, since vector code is 
generated at the first level at which S does not depend upon itself. Thus S runs 
in vector in p(S) loops. The time required to generate this code is given by the 
following theorem. 

THEOREM 7. If m is the number of edges in the dependence graph, n the number 
of vertices, and N the maximum nesting level of any loop in the program, then 
procedure codegen runs in time O(mN + nN). 

PROOF. If we assume that actually generating a parallel statement takes 
constant time and ignore, for the moment, the time required in a recursive call 
to codegen, the time required for the first invocation of codegen is O(m + n). To 
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see this, observe that the computation consists of three components: 

(1) identification of maximal strongly connected regions-this can be done by 
using Tarjan’s depth-first search method in O(m f n) time [31], 

(2) topological sorting of the n-blocks to determine the order of code generation- 
this will require O(m + n) time [ 161, 

(3) the code generation for-loop, which takes at most O(n) time, since we are 
ignoring the time spent in the recursive calls to codegen. ,,, 

Note that both (2) and (3) make use of the fact that the number of r-blocks p is 
less than or equal to the number of statements n. Thus the total time spent in 
codegen at level 1 is O(m + n). But we have actually shown that the time spent 
in any single invocation is linear in the number of vertices and edges in the 
subgraph presented to codegen. 

Thus, if strongly connected region Si has ni vertices and mi edges, the total 
time spent in calls to codegen at level 2 is 

i O(mi + ni) = 0 i 
i=l ( 

77Zi + i ?Zi 
i=l i=l 1 

= O(m + n), 

where p is the number of strongly-connected regions found at level 1. 
Continuing in this manner, it is clear that the time spent in all the invocations 

of codegen at any level is O(m + n). Since there are at most N levels, the total 
time is no worse than 

O((m + n)N). cl 

As a final observation, note that p(S) for each statement in the program could 
be computed directly from the augmented dependence graph using Kleene’s 
algorithm. 

5.3 Increasing the Level of Parallelism 

5.3.1 Loop Interchange. Although the procedure codegen generates parallel 
code for the maximal number of inner loops, it may be possible to generate vector 
code for an outer loop even when p(S) = 0. Consider the following example: 

DO 100 j = 1,100 
DO 90 i = 1,100 

S: X(i + 1, j) = F(X(i, j)) 
90 CONTINUE 

100 CONTINUE 

S depends upon itself in the innermost loop; hence p(S) = 0. However, if we 
interchange the two loops so that the j loop is innermost, p(S) is increased to 1 
and the j loop can be run in vector. 

This approach is not without its pitfalls, however, as the next example 
illustrates. 

DO 100 j = 1, 100 
DO 90 i = 1, 100 

X(i + 1, j + 1) = F(X(i, j + l), X(i + 2, j)) 
90 CONTINUE 

100 CONTINUE 
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Once again, if the loops could be interchanged, the new innermost loop (on j) 
could be run in vector. Unfortunately, merely interchanging the loops would 
introduce a semantic difference. In the original version above, the values of 
X(i + 2, j) used on the right-hand side would be those computed on the previous 
iteration of the outermost loop. However, if we interchange loops, the values of 
X(i + 2, j) will be those that existed before entry to the outermost loop, since 
only the first i + 1 rows will have been computed by the time X(i + 2, j) is used. 
Therefore, we cannot interchange loops and preserve the semantics. 

How can we decide when loop interchange is permissible and when it is not? 
In general, we can interchange loops if doing so preserves all dependences. 
To understand this, consider the diagram in Figure 12, which shows a two- 
dimensional array of nodes where each node represents a single parameterized 
instance of statement S in the loop structure below. 

DO 100 i = 1, N1 
DO 90 j = 1, Nz 

S 
90 CONTINUE 

100 CONTINUE 

Thus Sn represents the execution of S when both i and j are 1, Slz when i = 1 
andj=2,Sz1wheni=2andj= 1, and so on. To preserve dependence, we must 
ensure that if Si,j, A Su, then Si,j, is executed before SGZ in any modified loop 
structure. The diagram illustrates that if we wish to interchange loops, we must 
ensure that no dependence 

is such that il < iz and j, > j,. In Figure 12, if & depends on Si3, then 
interchanging loops (which can be visualized in the diagram either by transposing 
the matrix of nodes or by moving down the matrix first and then across) will 
destroy that dependence by causing Sz2 to be executed before Si3. The observation 
depicted in Figure 12 is due to Wolfe [36]. 

We now turn to the question of determining when an interchange-preventing 
dependence exists. 

Definition. Suppose S1 A SZ in the loop below. 

DO 100 i = 1, N1 
DO9Oi=l,Nz 

s,: WfGt 3) = Ft. . .I 
Sz: A = W’Wi, j))) 

90 CONTINUE 
100 CONTINUE 

The dependence is said to be interchange preventing if there exist ii, iZ, ji, j, such 
that 1 5 il < iz d N1(outer loop), 1 <j, < j, 5 Nz(inner loop), and f&, jl) = 
g(i2, i2). 

This is simply a straightforward encoding of the condition expressed graphi- 
cally in Figure 12. This can be generalized to multiple loops following the model 
of Section 4.3. 
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i 

I 

reserved by interchange by interchange 

Fig. 12. Dependence patterns in a loop. 

Definition. Suppose S1 is contained in nl loops with loop induction vari- 
ables (xl, x2, . . . , x,,,) and S2 is contained in n2 loops with induction variables 
(Xl, x2, * * * 9 x,J, where S1 and S’s are of the form 

S1: X( f (x1, , . . , x,,)) = F(. . .) 
232: A = G(X(g(xl, . . . , x,))). 

There exists an interchange preventing dependence of Sp on S1 with respect to 
carrier loop k and source loop k + 1, written S, Y:+~ SP, if there exist 

(il, i2, . . . , ik-lh 1 s i* 5 N4, Qq s.t. 1 5 q and q < k 

(jk+2t jk+3, . . . , h& 1 5 j, 5 N,, Qq s.t. k + 2 5 q and q 5 nl 

(lk+2, lk+3, *. . , 1,)~ 1 I 1, 5 N,, Qq s.t. k + 2 5 q and q I n2 

and integers al, (Ye, PI, PZ where 

1 I (~1 < (~2 5 Nk 
1 = 82 < ,& 5 Nk+l 

such that 

f(&, i2, , . . , ik-1, al, @l, jk+2, . . . , jn,) = g(il, i2, . . . , ik-1, a2, 02, lk+2, . . . , l& 

A useful observation about Y:+~ is given by the following lemma. 

LEMMA 4. S1yi+1 S2 e S1 bk S2. 

PROOF. Immediate from the definition of 6k (Section 4.3) with 

’ s; = al, 5; = a29 jk+l = @I, lk+l = b2. 0 

Lemma 4 tells us that we need not test for S, Y:+~S~ unless 5’1 6k SZ, a useful 
prescreen since the test for Y:+~, which we shall introduce next, represents a 
significant additional computation. 
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THEOREM 8. Suppose S1 and Sz are of the form given above and are contained 
in at least k -I- 1 common loops. If 

and 

then &y:+,S2 only if 

(a) gcd test: 

gcdh - h, . . . , ak-1 - h-1, a, . . . , a,,, bk, . . . , b,,) I bo - a0 

(b) y-inequality: 

(ak+l - bk) - ‘il (ai - bi)-(I’$ - 1) 

- ;; + bk)+(Nk - 2) - (ak+l - bk++l)-(Nk+l - 2) 

- ,E, ay(Mi - 1) - 2 b?(Ni - 1) 
i-k+2 

5 (ak+l - bk) + ‘il (Ui - bi)“(Ni - 1) 
i=l 

+ (ai - bz)+(Nk - 2) + bk+l + b,,)+Wk+l - 2) 

+ jz+, at@4 - 1) + 2 b;(A$ - 1). 
i-k+1 

The proof of this theorem (which resembles the proof of Theorem 4) is also 
contained in the Appendix. 

Since this test and Banerjee’s inequality are similar, testing an edge to 
determine whether it is interchange preventing can easily accomplished at the 
time of normal dependence testing. Furthermore, this method can be generalized 
to allow successive interchanges betweeen loops, or to test for interchanges 
between arbitrary (not necessarily consecutive) loops [4]. Note that the test need 
not be applied until a dependence with respect to carrier k has been discovered. 

Although the property of interchange prevention determines when two loops 
may be safely interchanged, it does not determine when they may be profitably 
interchanged. From the definition of the parallelism index of a statement, it 
should be obvious that loop interchange is profitable whenever it moves a 
recurrence outward, thereby decreasing q(S, 5’) and increasing the parallelism 
index. In order to move a recurrence outward, it is important that dependence 
edges carried by the outer loop not move inward with the interchange. Edges 
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that do move inward with an interchange are known as interchange sensitive 
edges. 

A glance at Figure 12 should help clarify this idea. The dependence of Sz2 on 
Sll is carried by the level 1 loop. If the two loops are interchanged, this dependence 
is still carried by the level 1 loop; hence it is insensitive to the interchange. On 
the other hand, the level 1 dependence of Szz on S12 becomes a level 2 dependence 
after loop interchange. This dependence is interchange sensitive. 

Detecting interchange sensitive edges is easy when dependence testing is 
performed. Since loop interchange corresponds to a switch of two terms in the 
dependence tests, Banerjee’s inequality and the gcd test can be easily modified 
to detect interchange sensitive edges. Loop interchange will then be profitable 
whenever a recurrence at an inner level moves out with the interchange, while 
the interchange sensitive edges do not form a new recurrence. 

A special case when interchange sensitive edges are guaranteed not to exist is 
given by the following lemma: 

LEMMA 5. If S1 i$ 5’2, and loops k and k + 1 are interchanged, then S1 Sk+l S,; 
in other words, Sa cannot depend on S1 with respect to the new carrier k + 1. 

PROOF. Interchanging two loops leaves the subscript functions f, g unchanged; 
however, we must remember that the interchange makes the kth parameter 
position correspond to the new position for carrier loop k + 1. Suppose that 
S1 bk+i S2 after interchange. Then there exist 

(xl, xi-i, . . . , xk, pl, yk+2, . * . , ynl) 

bl, x2, . . . , xk, tL2, zk+2, . . . , %zz) 

such that 

1 I xi I Ni, l=ilk 
1 = CLI -= ~2 5 Nk+l 

1 I yi 5 Nip k+2=i=nl 
1 I Zi 5 Ni, k+2~i~n2 

fbl, m-e, xk-1, pl, xk, yk+2, . . . , ynl) = &+I, . . . , xk-1, /.42, xk, zk+2, . . . , 2%). 

But this trivially implies S1 6k S2 before loop interchange. 0 

Lemma 5 says that a loop must carry a dependence in order to carry an 
interchange sensitive dependence. Thus, loop interchange may be profitable when 
an inner level carries a recurrence and an outer level carries no dependences. 
These ideas are more fully developed elsewhere [4]. 

5.3.2 Recurrence Breaking. Some recurrences that one finds have an essential 
dependence link that represents an output dependence or antidependence. These 
“pseudo-dependences,” as we called them earlier, may often be removed on 
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technical grounds by array expansion [19] or by clever renaming. The simplest 
case is the single-statement recurrence. 

DO 100 i = 1, 100 
X(i - 1) = F(X(i)) 

100 CONTINUE 

This statement has an antidependence upon itself. In particular, the input on 
the first iteration is the same as the output on the second iteration. If vector 
execution meant running the various iterations concurrently with loads and 
stores intermixed, we might accidentally store X(2) before loading X(l), partic- 
ularly if iteration 2 were executed before iteration 1. However the semantics of 
FORTRAN 8x prevent this problem from arising since they specify that the 
right-hand side is loaded before any stores occur. Thus we have the following 
result, which is stated without proof. 

THEOREM 9. Any single-statement recurrence based on antidependence may be 
ignored. 

The situation with output dependences at first appears more complicated. 
Consider the following nested loops. 

DO 100 i = 1,100 
DO90j=l,lOO 

X(i + j) = F(A(i, j)) 
90 CONTINUE 

100 CONTINUE 

In this example different values will be stored into a particular location of X at 
different times. For example, stores into X(4) occur when 

i= landj=3 
i=2andj=2 
i =3andj=l 

in that order. Here we are saved by the store semantics of FORTRAN 8x. 
Normally we would attempt to translate the above example as follows: 

IDENTIFY/l:lOO, l:lOO/XX( j, i) = X(i + j) 
Xx(*, *) = F(A(*, *)) 

The store semantics of this statement specify that the stores will actually occur 
into XX in column-major order. Thus 

Xx(3, 1) = F(A(3, 1)) 
Xx(2, 2) = F(A(2, 2)) 
Xx(1, 3) = F(A(l, 3)) 

will occur in the correct order, and after exit from the outer loop X will contain 
the right values. In general, all single statement output recurrences can be broken 
if the parallel code generator is careful in the way in which it uses IDENTIFY 
statements. 

Breaking output dependences in this manner is not so intuitively a correct 
transformation as breaking antidependences. For instance, assume that there is 
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a statement within the loops of the above example that uses X(i + j): 

DO 100 i = 1,100 
DO90j=l,lOO 

X(i + j) = F(A(j, i)) 
Y(j, i) = G(X(i + j)) 

90 CONTINUE 
100 CONTINUE 

It would be incorrect to generate the following parallel code for this example 

IDENTIFY/l:lOO, l:lOO/XX(j, i) = X(i + j) 
Xx(*, *) = F(A(*, *)) 
Y(*, n) = G(XX(*, *)) 

because Y(3, l), Y(2, 2), and Y(l, 3) all receive the same value, G(F(A(1, 3))), 
whereas in the original example they receive intermediate values in the 
computation. It thus appears that any single statement output recurrence that 
has a true dependence upon it cannot be ignored. 

But appearances in this case are deceiving. Note that when a later statement 
uses an intermediate value of the computation, which is stored over on another 
iteration, the recurrence cannot possibly be single statement. The reason is that 
the store on top of the value used creates an antidependence between the first 
statement and the last statement. This dependence and the true dependence 
guarantee that at least two statements will be tied up in the recurrence. Thus, if 
the code generator is careful in its generation of IDENTIFYs, the following 
theorem, which is stated without proof, is true. 

THEOREM 10. Any single statement recurrence based on output dependence 
may be ignored. 

The previous example is instructive for other transformations, also. Note 
that as written, each statement can be correctly vectorized in the inner loops; 
that is, 

DO 100 i = 1,100 
X(i + 1: i + 100) = F(A(1: 100, i)) 
Y(l: 100, i) = G(X(i + 1:i + 100)) 

100 CONTINUE 

However, we can enhance the parallelism present in this example. The main 
inhibition to vectorization of the i loop is the antidependence of the first 
statement on the second, that is, the fact that the first statement stores on top 
of values that are used earlier by the second statement. If we store the results of 
the first statement in a temporary, as in 

DO 100 i = 1,100 
DO 9Oj = 1,100 

‘W, i) = FM, 9) 
W, i) = WYj, 9) 
X(i + j) = TCj, i) 

90 CONTINUE 
100 CONTINUE 
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then we can break the antidependence and the recurrence. This loop may be 
translated directly to the vector form 

IDENTIFY/l:lOO, l:lOO/XX(j, i) = X(i + j) 
T(*, *) = FM*, a)) 
Y(*, $1 = WY*, *I) 
Xx(*, *) = T(*, :) 

This procedure, also known as the “node splitting” method [19], should be 
considered cautiously in light of the increased storage required for temporary 
arrays. 

In general, this technique can be used to break any recurrence that contains 
an antidependence as an essential link. Consider the example below. 

c 

DOlOI=l,N 
S, A(1) = G(X(1 + l), X(1)) 

r 
3 

6. 
SZ X(1 + 1) = F(B(1)) 

10 CONTINUE 

Here S1 depends on Sz in the true sense because it uses the output of Sz on the 
next iteration. However, we cannot merely interchange S1 with Sz and vectorize, 
because S1 would then get wrong values for its first input parameter X(1 + 1). 
Thus we have a recurrence involving antidependence. 

The obvious remedy is to introduce a new name for the first input parameter 
to S1 as below. 

/ DOlOI=l,N 
T(1) = X(1 + 1) 

B I 6 
S, A(I) = GVU), X(I)) r( 

3 6 
S2 X(1 + 1) = F(B(1)) 

10 CONTINUE 

Now Sz can be slipped in between So and 5’1 and all three statements can be 
vectorized. 

T(*) = X(* + 1) 
X(* + 1) = F(B(*)) 
A(*) = WI’(*), X(*)1 

In general, any recurrence involving an essential antidependence link can be 
broken by introducing new array temporaries. The efficiency gained by this 
transformation must be weighed against the additional storage costs. 

5.3.3 Thresholds. On some vector machines, short vector operations are effi- 
cient enough to be cost effective, even with vector lengths as small as 4 or 5. On 
the Cray-1, for example, the crossover point for choosing vector over scalar 
processing is between 2 and 4 elements [30]. For such machines, we may wish to 
vectorize recurrences that have a long period or “lag.” Consider an example. 

DO 100 i = 1,100 
X(i + 5) = F(X(i)) 

100 CONTINUE 
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If this loop is broken up into the following double loop, 

DO 100 i = 1,20 
DO90j=1,5 

X(i*5+j)=F(X(i*5+j-5)) 
90 CONTINUE 

100 CONTINUE 

the inner loop now contains no recurrence and can be directly translated to 
vector form. 

DO 100 i = 1,20 
X(5 * i: 5 * i + 4) = F(X(5 * 1 - 5: 5 * i - 1)) 

100 CONTINUE 

Let us develop this idea more formally. 

Definition. Suppose S1 dk Sz. The direct threshold of this dependence, written 
~z(S’i, S,), is one less than the minimum value of Nk (the loop upper bound for 
the tzth loop) at which Banerjee’s inequality still holds. Alternatively, 7O,(S,, Sz) 
is the maximum value of Nk for which Banerjee’s inequality does not hold. 

7okcL SP) = maxln, 0 I n ZG Nk 1 if Nk is set to n, S1 SkSP ). 

The threshold, as defined above, indicates the number of times the loop may 
be executed without creating the dependence. This information can be useful in 
two ways: 

(1) It may be the case that every dependence has the same threshold as the 
initial dependence. In the previous example, every iteration of the statement 
(other than the first four) uses values that were computed five iterations back. 
When every dependence between two statements has the same, exact threshold, 
the threshold is known as a constant threshold, and an inner loop that runs up 
to the threshold will carry no dependences. 

(2) It may also be the case that every dependence will be satisfied by breaking 
the loop across a threshold. For instance, the threshold in 

DO 100 I = 1,100 
A(1) = F(A(lO1 - I)) 

100 CONTINUE 

is 50, since no dependence arises until the 51st iteration. Note that in this case, 
every dependence crosses the 51st iteration. Thus, the statement can be safely 
executed as 

100 DO 100 I = 1,2 
A(50:1-49:50*I)=F(150-50*1:101-50*1) 

100 CONTINUE 

This type of threshold is known as a crossing threshold. 

Determining whether a threshold is a constant threshold, a crossing threshold, 
or neither can be easily accomplished using Banerjee’s inequality. The actual 
computation, which is too tedious to be detailed here, is precise; that is, it exactly 
determines which thresholds are constant and which are crossing. 
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Crossing thresholds impose very strict requirements on any vector statements 
that attempt to satisfy them. Since they specify an exact point that must be 
crossed by a vector analog, only certain vector sizes can be used. For instance, 
the crossing example above can be run in vector sizes of 5 or 10, since these 
exactly divide 50, but it cannot be correctly run with a vector size of 8. As a 
result, crossing thresholds are not easily extended to multiple statements. 

Constant thresholds, on the other hand, represent the minimum threshold of 
a dependence-any vector size smaller than a constant threshold will satisfy the 
dependence (note that the first example can be correctly run with a vector size 
of 2, 3, 4, or 5). As a result, constant thresholds can be extended to multiple 
statements and to indirect dependences. 

To extend the concept of threshold to indirect dependences, we need some way 
to compute a composite threshold. To put things in perspective, the threshold 
may be thought of as the minimum number of iterations between the definition 
and the use of the variable involved in the dependence. Since an indirect 
dependence ceases to exist whenever one of the direct dependences in the path 
ceases to exist, the threshold of an indirect dependence is simply the maximum 
of the direct thresholds in the path. (Note that the first dependence to disappear 
is the one with the largest threshold.) There may be multiple paths between two 
statements, however. Since the dependence will disappear only when all the 
indirect dependences disappear, the threshold of a composite dependence is the 
minimum of the thresholds of the individual paths. These observations are 
summarized in the following definitions. 

Definition. If P = (TO, Tl, . . . , Z’,) is a sequence of statements such that 

T,, Ad Tl 4 . . . Ad T,, 

then the direct threshold of the dependence path P at depth d, written 7:(P), is 
given by 

Definition. If S1 Ai Sp, then the depth d threshold of the dependence, written 
rd (2%) Sp ) is given by 

7d(S1, SZ) = min(T:(P) 1 P is a dependence path from S1 to Sa). 

Note that we must distinguish a direct threshold 7’ and the more general 
indirect threshold 7, because there may be a dependence path from S1 to S, that 
has a smaller cumulative threshold than the direct threshold of the dependence 
of S2 on S1. In other words, 

7k(‘%, ‘%I ‘: 7331, ‘%) 

and it is possible for the inequality to be strict. 
Now suppose the translator has an input parameter 0, which specifies the 

minimum number of elements for which vector operations should be assumed 
profitable. If statement S depends upon itself, that is, S A+ S, and p(S) = m, the 
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level of parallelism can be profitably increased through the use of thresholding 
if 

~n--m+lm S) = e 

where n is the number of loops containing S. In general, thresholding may be 
desirable only if p(S) = 0. 

In order to properly implement thresholding, the augmented dependence graph 
will need to associate a threshold with each directed edge. Since each such edge 
represents a single dependence S1 8k Sz, the associated threshold will be 
7:(&, Sz), the direct threshold. 

5.4 Unknown Constants 

The dependence test described in Section 4 is fine so long as all the coefficients 
ho, al, * - * , an,, b 0, . . . , b,) are known constants. However, in real programs we 
often find unknown variables, possibly subroutine parameters, inside subscripts. 
For example, consider 

DO 100 i = 1, 100 
Sl X(i, K) = F(A(i, K)) 

DO50J=l,lOO 
S2 A(i, j) = G(X(i, j + K)) 

50 CONTINUE 
100 CONTINUE 

The test described in Section 4 has no provision for handling unknown constants 
like K, so the translator must assume S1 A &, even though no dependence exists. 
Can we revise the test to discover that S1 does not depend on Sp and thus avoid 
the presumption that S1 and Sz form a recurrence? 

One obvious technique would be to evaluate Banerjee’s inequality symbolically 
as far as possible. In the example above, this approach results in the elimination 
of K from the inequality since 

b,,-a= K-K=O. 

Symbolic evaluation was used in the vectorizing compiler for the Texas Instru- 
ments Advanced Scientific Computer [9]. 

The method fails, however, if the two subscripts contain terms UK and bK, 
where a and b are constants and a # b. In many cases we may be able to establish 
rough upper and lower bounds on the value of K by examining the program logic. 
For example, K I 0 might be excluded by a specific text and branch on entry to 
the subroutine. We can make use of such bounds on K by treating K as an 
induction variable for an outer loop containing both S1 and Sz. Then the 
dependence test of Section 4 could be routinely applied. 

Using this technique, we can develop more precise dependence information 
than would be possible if we blindly presume dependence whenever unknown 
variables appear. 

6. CONDITIONAL STATEMENTS 

The theory of vector translation presented so far is based on an idea of data 
dependence. However, other types of dependence can occur within a program. In 
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particular, conditional statements and branches introduce control dependences. 
If loops containing such statements are to be vectorized using the previous theory, 
then control dependences must be explicitly represented in the dependence 
graph. 

One method for dealing with control dependences is to convert all statements 
under the control of a branch into conditional assignments whose controlling 
conditions are stated explicitly in the statements themselves. Once this is done, 
the condition controlling the statement can be viewed as another input expres- 
sion. The following loop is an example: 

DO 100 I = 1, N 
IF (A(1) .LE. 0) GOT0 100 

A(1 -t 1) = B(1) + 3 
100 CONTINUE 

It is difficult to determine whether the code can be vectorized as is. However, if 
it is converted to an equivalent form: 

DO 100 I = 1, N 
BRl = A(1) .LE. 0 
IF (.NOT. BRl) A(1 + 1) = B(I) + 3 

100 CONTINUE 

the data dependences form an obvious recurrence. This example cannot be 
vectorized because of the recurrence; however, the following slightly different 
example does not contain a recurrence. 

DO 100 I = 1, N 
IF (A(1) .LE. 0) GOT0 100 
A(1) = B(1) + 3 

100 CONTINUE 

Converting all the control dependences into data dependences yields 

DO 100 I = 1, N 
BRl = A(1) .LE. 0 
IF (.NOT. BRl) A(1) = B(1) + 3 

100 CONTINUE 

If the scalar variable BRl in the above example is transformed into an array: 

DO 100 I = 1, N 
BRl(1) = A(1) .LE. 0 
IF (.NOT. BRl(1)) A(1) = B(1) + 3 

100 CONTINUE 

the loop can be transformed in a straightforward way to two vector statements. 

BRl(l:N) = A(l:N) .LE. 0 
WHERE (.NOT. BRl(l:N)) A(l:N) = B(l:N) + 3 

The process of expanding scalars into arrays for vectorization is known as scalar 
expansion and is described in detail by Wolfe [36]. The process of converting 
control dependences into data dependences is known as IF conversion [3]. 

IF conversion is accomplished by converting all statements under the control 
of an IF or a branch into conditional statements. These conditional statements 
can then be translated, where possible, into conditional vector statements by 
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viewing the condition as just another input to the statement. As such, all of the 
methods of dependence analysis described earlier apply to these statements, and 
conditional dependence as defined by Kuck et al. [19] becomes a special case of 
true dependence. 

IF conversion is not a trivial task, as the following example illustrates: 

DO 100 I = 1, 100 
IF (A(I).GT.lO) GO TO 60 

Sl A(1) = A(1) + 10 
IF (B(IhGT.10) GO TO 80 

SZ B(1) = B(1) + 10 
Ss 60 A(1) = B(1) + A(1) 
s4 80 B(1) = A(1) + 5 

100 CONTINUE 

Here there are two conditions that we shall call cl and c2, where 

cl = A(I).GT. 10 
cp = B(I).GT. 10 

Statements in the loop are controlled by conditions as follows. 

Statement Controlling Condition 
Sl -2 
s2 -q A 322 
sa Cl v (71 A 72) 
s4 Cl v (71 A c2) v (71 A 72) 

The translator must be able to recognize identities and simplify logical expres- 
sions if it is to prevent the proliferation of long expressions involving conditions 
like cl and c2. For example, it should surely recognize that the condition control- 
ling S4 above is always true, and hence S4 is not under the control of any IF 
statement. The Rice translator incorporates a version of the Quine-McCluskey 
prime implicant simplifier algorithm [23, 291 to simplify such expressions. As a 
result, the IF conversion module in the translator converts the example loop 
above to the following. 

DO 100 I = 1, 100 
BRl = A(1) .GT. 10 

Sl IF (.NOT. BRl) A(1) = A(1) + 10 
IF (.NOT. BRl) BR2 = B(1) .GT. 10 

&? IF (.NOT. BRl .AND. .NOT. BR2) B(1) = B(1) + 10 
& IF (BRl .OR. .NOT. BR2) A(1) = B(1) + A(1) 
s4 B(1) = A(1) + 5 

100 CONTINUE 

Note that the condition guarding statement S3 has also been slightly simplified. 
When we first ran this example, we briefly thought there was an error in the 
simplifier; then we realized that the new version of S, is indeed correct. 

If dependence analysis, properly extended to handle conditional assignments, 
is applied to this loop, it will report that all statements in the loop can be 
converted to vector assignments or conditional vector assignments. This will not 
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always be the case, however, since an IF statement can be part of a recurrence, 
as the very first example in this section demonstrates. 

IF conversion, as implemented in the Rice translator, is an extremely powerful 
process that can convert any combination of branches into the equivalent 
sequence of conditional assignments. This transformation is treated in more 
detail elsewhere [3 1. 

IF conversion differs significantly from the way that IF statements are handled 
in PARAFRASE. In that system, IF statements are classified using dependence 
analysis, and special techniques are selected based upon that classification 
[20, 321. In particular, “mode vectors” are used to control parallel execution 
where it is determined that parallel execution is possible; these vectors are 
sometimes computed by fast Boolean recurrence solvers. In the Rice system, 
these techniques would be handled as special cases of recurrence-breaking 
transformations. 

7. STATUS OF THE IMPLEMENTATION 

As we said in the introduction, we began with the PARAFRASE compiler, 
developed by Kuck’s group at the University of Illinois. This provided us with 
an excellent starting point and a convenient vehicle for familiarizing ourselves 
with Ku&s techniques. However, we soon discovered that the early version of 
PARAFRASE with which we were working was simply too inefficient and 
unreliable to support the new techniques we wanted to try. So we abandoned this 
effort and began work on an entirely new translator, which we called PFC. We 
were able to bring up the initial version of PFC in roughly three months. Since 
that time it has been extensively enhanced to include most of the transformations 
discussed in this paper, including loop interchange, thresholds, recurrence 
breaking, and IF conversion. 

The current version of PFC runs in a three-megabyte machine under 
VM/CMS and consists of roughly 25,000 lines of PL/I. However, this figure is 
somewhat misleading because we make extensive use of the preprocessor to 
implement data abstraction. In particular, a high-level language for manipulating 
linked lists (known as Polylist) is implemented entirely in macros. 

The performance of the translator has been a pleasant surprise. Not only does 
it do an excellent job of uncovering parallelism, but it also is extremely fast in 
doing so. For example, a composite case of kernels from Los Alamos that we use 
to benchmark the translator requires roughly a minute of CPU time to vectorize, 
even with string and array bounds checking enabled. By comparison, our last 
version of PARAFRASE required roughly 10 minutes of CPU time to vectorize 
the same program. 

APPENDIX. PROOF OF THEOREMS 4 AND 8 

An important property of the positive and negative parts of a real number is 
given by the following lemma. 

LEMMA 1. Let t, s, and z denote real numbers. If 0 I z I s then 

-t-s 5 tz 5 t’s. 
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Furthermore, there exist values zl, z2, 0 5 zl, z2 I s such that 

t21 = -t-s 

tzz = t+s. 

PROOF. (a) If t z 0, then 0 4 tz 5 ts; hut t = t+ and t- = 0, so -t-s I tz 5 ts, 
t21 = -t-s when z1 = 0 and tz2 = t+s when z2 = s. 

(b) If t < 0, then ts I tz 5 0; but t = -t-, t+ = 0, so -t-s I tz 5 Ps, tzl = -t-s 
when z1 = s and tz2 = t+s when 22 = 0. Cl 

THEOREM 4. If f(xl, . . . , X,,) = & + C& &Xi and g(Xl, . . . , X4) = b0 + 
CZl bixi and S1 and S2 are of the form 

4: X( f (x1, . . . , x,,)) = F(. . .) 

S2: A = G(Xgh . . . , x,))) 

and are contained in n common loops, n L k, and the upper bounds of the loops 
surrounding Sl are Mi and the upper bounds of the loops surrounding 5’2 are Ni 
(Mi = Ni for i I n), then S1 & S2 only if 

(a) gcd test: 

gcdh - bl, a2 - b2, . . . , ah-1 - bk-1, ak, . . . , a,,, bk, . . . , b,) I bo - a0 

(b) Banerjee inequality: 

--bk - IzI (ai - bi)-(Ni - 1) - (u; + bk)+(Nk - 2) 

- ;=F+, aT(Mi - 1) - 2 bt(Ni - 1) 
i=k+l 

I 2 bi - z CZj 
i=O i=O 

k-l 
I -bk + x (~i - bi)+(Ni - 1) + (a: - bk)+(Nk - 2) 

i=l 

+ ,=$+, atwi - 1) + 2 bT(Ni - 1). 
i=k+l 

PROOF. Consider the equation 

hh, . . . , xnl, ~1, . . . , Y,J = f(nl, . . . , GJ - g(y,, . . . , Y,) = 0. 

This is equivalent to 

2 aixi - s biyi = bo - a~. 
i=l i=l 

By the definition of 8k, S1 bk S2 if and only if there exist 

h . - - , rk-1) (Sk, . . . , sn,) (tk, . . . , t%) 
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such that 
k-l 

z1 h - bi)ri + 2 UiSi + z biti = bo - U+* 
i=k i=k 

A standard result from the theory of Diophantine equations [14] tells us this has 
a solution if and only if 

&bl - h, . . . , ak-1 - bk-I, Uk, . . . , U,,, bk, . . . , b,) 1 bo - ‘Jo. 

Thus & & Sz + (a). 
To show (b), assume there exists a real solution of 

hh, - - * , +, Yl, * * *, YnJ = 0 

in the region R given by 

15XI=y15NI 
1=x,=y2sNz 

1 5 xk-1 = yk-1 5 Nk-1 
l~Xk<yk~Nk 

1 5 xk+l = Mk+l, 1 = yk+l 5 Nk+l 

1 5 Xk+2 = Mk+z 1 5 yk+2 5 Nk+z 

1 I x,,~ 5 M,,, l%y,sN,,, 

From the intermediate value theorem of calculus, we have 

mjn h 5 0 5 max h. 
R 

Let us now derive formulas for both the minsh and maxsh: 

h = a~ - bo + z aixi - 5 biyi 
i-l i=l 

k-l 

= UIJ - bo + z (Ui - bi)yi + @& - b/J’k + 3 &Xi - 2 biyi. 
i=l i=k+l i=k+l 

We will maximize and minimize each of the variable term8 separately. Let 

ti = Xi - 1 and Si = yi - 1. 

(1) Since Xi = yi for 1 I i C k, then 
k-l k-l k-l k-l 

i;l (uixi - bYi) = Jl (ui - bih = izl (ui - bi) + C. (ai - bi)ti 
i=l 

Furthermore, 0 5 ti I Ni - 1, which means that 

-(Ui - bi)-(Ni - 1) 5 (ai - bi)ti I (ai - bi)+(Ni - 1) 
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and there exist values of ti that give equality. Hence 

k-l k-l 

Jl (Ui - bi) - iJIl (Ui - bi)-(Ni - 1) 

k-l 

5 izl (&xi - byi) 

k-l k-l 

5 izl (Ui - bi) + izl (Ui - bi)+(Ni - 1). 

(2) Since 1 5 & 5 (yk - 1) 5 (Nk - I), 

o%tk=Sk-lsNk-2 

SO akxk = ak + uktk and -a;(% - 1) 5 uktk 5 a:(% - 1) with eqUality for legal 
values of tk. Hence 

uk - bk - &(Sk - 1) - b/& 

5 akxk - bkYk 

5 uk - bk + a;(& - 1) - b/& 

But since 0 5 (Sk - 1) I Ni - 2, we get (using Lemma 1 twice) 

(-U; - bk)-(Nk - 2) = -(U; + bk)+(Nk - 2) 5 (-a; - b&k - 1) 

and 

(4 - bk)(Sk - 1) 5 (~2; - bk)+(Nk - 2). 

Putting these inequalities together we get 

uk - 2bk - (~2; + bk)+(& - 2) 

5 ukxk - buk 
5 t.& - 2bk + (U; - bk)+(Nk - 2) 

with equality for legal values of xk and yk. 
(3) Foranyi,k<isnl, 

&Xi = Ui + UiSi. 

Since 0 5 si I Mi - 1, 

-Ur(Mi - 1) 5 UiSi I Ut(Mi - 1) 

so 

3 ui - i=$+l uf(Mi - 1) 
i=k+l 

5 iz$+l ui + iEg+l ui+(Mi - 1). 
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(4) Similarly -biyi = -bi - biti. 
Since 0 5 ti 5 Ni - 1, 

-(-bi)-(Ni - 1) 5 -biti 5 (-bi)+(Ni - 1) 

Or 

-bt(Ni - 1) d -biti d b;(Ni - 1). 

Hence 

( - i=z+l hYi - 

5 - 2 bi + .8, bT(IVi - 1). 
i=k+l 

Gathering these inequalities we get 

m;x h = 2 ai - 5 bi + ‘il (Ui - bi)+(Ni - 1) 
i=O i=O i=l 

- bk + (ai - bk)+(Nk - 2) i- 2 aT(Ni - 1) i- 2 b;(Ni - 1) 
i=k+l i=k+l 

and 

rnp h = 2 ai - 2 bi - ‘il (ai - bi)-(Ni - 1) 
i=O i=O i=l 

- bk - (a; - bk)+(Nk - 2) - 2 a;(IVi - 1) - z bt(IVi - 1). 
i=k+l i=k+l 

By subtracting x& oi - Czo bi from both sides of each inequality in min h I 0 
I max h, we see that there is a real solution of h = 0 in R if and only if Banerjee’s 
inequality holds. Since there are integer solutions only if there are real solutions, 
the theorem follows. Cl 

THEOREM 8. Suppose S1 and Sz are of the form given above, and are contained 
in at least k + 1 common loops. If 

n. 

fh - * * , X0,) = Cli) + jJ &Xi 
i=l 

and 

g(x1, - * a, x-) = bo + 2 bixi 
i=l 

then S1 yi+l S2 only if 

(a) gcd test: 

gcdh - bl, . . . , ak-1 - bk-1, ak, . . . , a,,, bk, . . . , b,,) 1 bo - a0 
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(b) y - inequality: 
k-l 

(Uk+l - bk) - Jl (Ui - bi)-(Ni - 1) - (Uk + bk)+(Nk - 2) 

n, 

- (ak+l - bi+l)-(Nk+l - 2) - C ai - (Mi - 1) - 2 bt(Ni - 1) 
i=k+2 i=k+2 

5 z bi - 5 ai 
i=O i=O 

k-l 

I (uk+l - bk) + C (Ui - bi)+(Ni - 1) 
i=l 

+ (a: - b)+(Nk - 2) + (Uk+l + bk+d+(Nk+l - 2) 

+ i=z+l U: + (Mi - 1) + 3 b;(Ni - 1). 
i=k+l 

k PROOF. S1y:+1S2 * (a) since S1yk+I 2 S * S1&S2 by Lemma 4 and S18kS2 * 
(a) by Theorem 4. We must show that S y 1 i+lS2 + (b). Consider the real solutions 
of 

or 

in the region 5’: 

2 Uixi - izl biyi + (GI - bo) = 0 
i=l 

l~xl=ylsNl 
. . . 

lsXk<yksNk 
1 5 < yk+l xk+l 5 Nk+l 

1 5 xk+2 5 Mk+2 1 5 yk+2 5 Nk+2 

. . . 

1 5 % M,, x,, 1= ynz 5 Nn, 

A real solution exists if and only if 

m~h~O~maxh 
s 

By rearrangement we have 
k-l 

h = a~ - bo + 2 (aixi - biyi) 
i=l 

+ (UkXk - bkYk) + (Uk+lXk+l - bk+lYk+d 

+ i=z+2 uixi - f biyi 
i=k+2 

ACM Transactions on i’rogmmming Languages and Systems, Vol. 9, No. 4, October 1987. 



Automatic Translation of FORTRAN Programs to Vector Form l 539 

If we maximize and minimize these terms separately we have, from the proof of 
Theorem 4, 

k-l k-l 

izl (Qi - bi) - izl (Ui - bi)-(Ni - 1) 

k-l 

5 C (&Xi - biyi) 
i=l 

k-l k-l 

and 

jz+, Ui - ,E, bi - 3 Ui(Mi - 1) - z bZ(Ni - 1) 
i=k+2 i=k+2 

U:(Mi - 1) + 2 br(Ni - 1) 
i=k+2 i=k+2 

It only remains to maximize and minimize the terms for k and k + 1 

akxk - bkYk + ak+lxk+l - bk+ok+l 

= uk + uk(xk - 1) - 2bk - bk(Yk - 2) 
+ 2ak+l + ak+lbk+l - 2) - b/a+1 - bk+l(Yk+l - 1) 

Since 1 I xk < yk I Nk, it follows that 

OS&-lsyk-2sNk-2 

and 

-a, (Yk - 2) 5 uk(Xk - 1) 5 a;(yk - 2) 

by Lemma 1. Also 1 I yk+l < &+l I Nk+l implies 

0 5 yk+l - 1 5 xk+l - 2 5 Nk+l - 2 

so 

(Al) 

WI 

-bi+l(Xk+l - 2) 5 bk+l(Yk+, - 1) 5 b;+l(xk+l - 2) (A3) 

again by Lemma 1. 
Combining (Al)-(A3) gives 

ak - 2bk - (a; + bkh’k - 2) + 2ak+l - bk+l + (ak+l - b;+,,)bk+l - 2) 

5 bkxk - bkYk) + bk+lXk+Z - bk+lYk+l) 

5 ak - 2bk + (a: - bdb’k - 2) + 2ak+l - bk+l + (uk+l + b,,)bk+l - 2). 
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Applying Lemma 1 twice more on each side and rearranging, we get 

bk - bk) + (Uk+l - bk+l) + (Uk+l - bk) 

- (a; + bk)+(Nk - 2) - (Uk+l - b;+l)-(Nk+l - 2) 

= (Ukxk - bk) + (Uk+lXk+l - bk+lYk+l) 

5 (Uk - bk) + (Uk+l - bk+l) + (Uk+l - bk) 

+ (a: - bk)+(Nk - 2) + (Uk+l + b;+l)+(Nk+l - 2). 

Since Lemma 1 implies that there exist values of xi and yi such that equality 
exists in each case where it was applied, 

k-l k-l 

rnp h = a~ - bo + izl (ai - bi) - 1 (ai - bi)-(Ni - 1) 
i=l 

+ (Uk - bk) + (Uk+l - bk) - (Uk + bk)+(Nk - 2) 

+ bk+l - bk+l) - (Uk+l - bk+l)-(Nk+l - 2) 

+ $ (& - 2 bi - n’ 
i=k+2 i=k+2 

i=F+2 aM - 1) 
i=k+2 

k-l k-l 

m;x h = Q - bo + C (ai - bi) + 2 (ai - bi)+(Ni - 1) 
i=l i=l 

+ (Uk - bk) + bk+l - bk) + (U: - bk)+(Nk - 2) 

+ (Uk+l - bk+l) + bk+l + &+l)+(Nk+l - 2) 

= i=z+2 ui - jz+, bi + U’(Mi - 1) + 2 b;(Ni - 1). 
i=k+2 i=k+2 

Subtracting z& ai - Czo bi from both sides of each inequality in the expression 

mph=OImaxh 
s 

yields the desired result. 0 
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