An Efficient Data Dependence Analysis for Parallelizing Compilers

Alok Jadhav - 05305041
John Chaitanya Kati-05305046

11th November, 2005
Agenda

- Background
- Basic Concepts
- Algorithm
- Examples
- Conclusion
- References
Approaches in Dependence Testing

- Based on Numerical Methods, Inaccurate
 - Multiple Dimensions simultaneously, Time Consuming
 - λ test, Efficient and Accurate
Approaches in Dependence Testing

- Based on Numerical Methods, Inaccurate
- Multiple Dimensions simultaneously, Time Consuming
- \(\lambda \) test, Efficient and Accurate
Approaches in Dependence Testing

- Based on Numerical Methods, Inaccurate
- Multiple Dimensions simultaneously, Time Consuming
- \(\lambda \) test, Efficient and Accurate
Numerical Methods

- Based on solving Diophantine Equations and the Bounds on real functions
 - Data areas accessed by two array references are examined Dimension by Dimension
 - Inaccurate
Numerical Methods

- Based on solving Diophantine Equations and the Bounds on real functions
- Data areas accessed by two array references are examined Dimension by Dimension
- Inaccurate
Numerical Methods

- Based on solving Diophantine Equations and the Bounds on real functions
- Data areas accessed by two array references are examined Dimension by Dimension
- Inaccurate
Example

\[N = 50 \]
\[DO \ I = 1, N \]
\[DO \ J = 2, N \]
\[S1 : \quad A[2 \ast I + 3 \ast J + N, 3 \ast I + J + N - 1] =(r1) \]
\[S2 : \quad = A[I - J + N + 1, 2 \ast I - J + N - 2] \quad (r2) \]

\textit{ENDO}
\textit{ENDDO}

- Let \(x_1 = I \) and \(x_2 = J \) for reference \(r1 \)
- Let \(x_3 = I \) and \(x_4 = J \) for reference \(r2 \)

- Diaphontine Equations are
 \[2x_1 + 3x_2 - x_3 + x_4 = 1 \ldots (1) \]
 \[3x_1 + x_2 - 2x_3 + x_4 = -1 \ldots (2) \]
 \textit{where} \(1 \leq x_1, x_3 \leq 50, 2 \leq x_2, x_4 \leq 50 \)
Example (Cont...)

Solution by previous Numerical Methods :-

- Each Dimension is treated separately
- Any equation has no solution within loop bounds, no dependence
- If each equation has solution independently, dependence has to be assumed

- \((x_1, x_2, x_3, x_4) = (1,2,9,2)\) - solution to (1)
- \((x_1, x_2, x_3, x_4) = (1,2,4,2)\) - solution to (2)

- So we assume dependence exists
Example (Cont...)

- Actual solution \((1) \times 3 - (2) \times 2\)
- Reduced Equation \(7x_2 + x_3 + x_4 = 5\)
- No solution
- Previous Numerical Methods failed because of presence of coupled subscripts
Effect of *coupled subscripts* on determination of *dependence directions*

\[
DO \ i = 1, 100 \\
DO \ j = 1, 100 \\
S1 : \quad A[i, j] = \ldots \ldots (3) \\
S2 : \quad A[j, i] = \ldots \ldots (4) \\
ENDO \\
ENDO
\]

\[\downarrow\]
\[i_1 = j_2 \ldots (5)\]
\[j_1 = i_2 \ldots (6)\]
\[1 \leq i_1, i_2, j_1, j_2 \leq 100 \ldots (7)\]
\[i_1 = i_2, j_1 < j_2 \ldots (8)\]
Effect of *coupled subscripts* on determination of dependence directions

\[DO \ i = 1, 100 \]
\[DO \ j = 1, 100 \]
\[S1: \quad A[i, j] = \ldots \quad (3) \]
\[S2: \quad A[j, i] = \ldots \quad (4) \]

\[ENDO \]
\[ENDO \]

\[\downarrow \]
\[i_1 = j_2 \quad \ldots \quad (5) \]
\[j_1 = i_2 \quad \ldots \quad (6) \]
\[1 \leq i_1, i_2, j_1, j_2 \leq 100 \quad (7) \]
\[i_1 = i_2, j_1 < j_2 \quad \ldots \quad (8) \]
Effect of *coupled subscripts* on determination of dependence directions (Cont...)

- Previous Methods treat each dimension separately
- (5), (7), (8) is considered, solution is $i_1 = j_2 = 100$
- (6), (7), (8) is considered, solution is $j_1 = i_2 = 1$
- Actually there is no solution, if both equations are considered simultaneously
- Previous Methods failed because of presence of *coupled subscripts*
Notations used

1. Reference pair \((r1, r2)\)

2. \(r1\) is \(A(f_1(i_1, i_2, \ldots, i_{l_1}), f_2(i_1, i_2, \ldots, i_{l_1}), \ldots, f_m(i_1, i_2, \ldots, i_{l_1}))\)

3. \(r2\) is \(A(g_1(j_1, j_2, \ldots, j_{l_2}), g_2(j_1, j_2, \ldots, j_{l_2}), \ldots, g_m(j_1, j_2, \ldots, j_{l_2}))\)
Basic Concepts

\[f_1(i_1, i_2, \ldots, i_{l_1}) = g_1(j_1, j_2, \ldots, j_{l_2}) \]
\[f_2(i_1, i_2, \ldots, i_{l_1}) = g_2(j_1, j_2, \ldots, j_{l_2}) \]
\[\vdots \]
\[f_m(i_1, i_2, \ldots, i_{l_1}) = g_2(j_1, j_2, \ldots, j_{l_2}) \]

\[a^{(1)}_1 v^{(1)} + a^{(2)}_1 v^{(2)} + \cdots + a^{(n)}_1 v^{(n)} + c_1 = 0 \]
\[a^{(1)}_2 v^{(1)} + a^{(2)}_2 v^{(2)} + \cdots + a^{(n)}_2 v^{(n)} + c_2 = 0 \]
\[\vdots \]
\[a^{(1)}_m v^{(1)} + a^{(2)}_m v^{(2)} + \cdots + a^{(n)}_m v^{(n)} + c_m = 0 \]
Basic Concepts

\[
f_1(i_1, i_2, \ldots, i_{l_1}) = g_1(j_1, j_2, \ldots, j_{l_2})
\]
\[
f_2(i_1, i_2, \ldots, i_{l_1}) = g_2(j_1, j_2, \ldots, j_{l_2})
\]
\[\vdots\]
\[
f_m(i_1, i_2, \ldots, i_{l_1}) = g_2(j_1, j_2, \ldots, j_{l_2})
\]

\[
a^{(1)}_1 v^{(1)} + a^{(2)}_1 v^{(2)} + \cdots + a^{(n)}_1 v^{(n)} + c_1 = 0
\]
\[
a^{(1)}_2 v^{(1)} + a^{(2)}_2 v^{(2)} + \cdots + a^{(n)}_2 v^{(n)} + c_2 = 0
\]
\[\vdots\]
\[
a^{(1)}_m v^{(1)} + a^{(2)}_m v^{(2)} + \cdots + a^{(n)}_m v^{(n)} + c_m = 0
\]
Geometrical illustrations

Figure: Geometrical illustration

Notations

Basic Concepts
Case for Two-dimensional array reference

Alok Jadhav - 05305041 John Chaitanya Kati-05305046
An Efficient Data Dependence Analysis for Parallelizing Compilers
Our equations are: \(f_1 = 0 \) and \(f_2 = 0 \)

where \(f_i = a_i^{(1)} v^{(1)} + a_i^{(2)} v^{(2)} + \cdots + a_i^{(n)} v^{(n)} + c_i \)

Linear combination is: \(f_{\lambda_1,\lambda_2} = \lambda_1 f_1 + \lambda_2 f_2 \)

in expanded form

\[
f_{\lambda_1,\lambda_2} = (\lambda_1 a_1^{(1)} + \lambda_2 a_2^{(1)}) v^{(1)} + (\lambda_1 a_1^{(2)} + \lambda_2 a_2^{(2)}) v^{(2)} + \cdots + (\lambda_1 a_1^{(n)} + \lambda_2 a_2^{(n)}) v^{(n)}
\]
Our equations are: \(f_1 = 0 \) and \(f_2 = 0 \)
where \(f_i = a_i^{(1)}v^{(1)} + a_i^{(2)}v^{(2)} + \cdots + a_i^{(n)}v^{(n)} + c_i \)

Linear combination is: \(f_{\lambda_1, \lambda_2} = \lambda_1 f_1 + \lambda_2 f_2 \)
in expanded form
\[
f_{\lambda_1, \lambda_2} = (\lambda_1 a_1^{(1)} + \lambda_2 a_2^{(1)})v^{(1)} + (\lambda_1 a_1^{(2)} + \lambda_2 a_2^{(2)})v^{(2)} + \cdots + (\lambda_1 a_1^{(n)} + \lambda_2 a_2^{(n)})v^{(n)}
\]
Case for Two-dimensional array reference

Our equations are: \(f_1 = 0 \) and \(f_2 = 0 \)
where \(f_i = a_i^{(1)} v^{(1)} + a_i^{(2)} v^{(2)} + \cdots + a_i^{(n)} v^{(n)} + c_i \)

Linear combination is: \(f_{\lambda_1,\lambda_2} = \lambda_1 f_1 + \lambda_2 f_2 \)
in expanded form
\[
f_{\lambda_1,\lambda_2} = (\lambda_1 a_1^{(1)} + \lambda_2 a_2^{(1)}) v^{(1)} + (\lambda_1 a_1^{(2)} + \lambda_2 a_2^{(2)}) v^{(2)} + \cdots + (\lambda_1 a_1^{(n)} + \lambda_2 a_2^{(n)}) v^{(n)}
\]
Definition

\[\psi^{(i)} = \lambda_1 a_1^{(i)} + \lambda_2 a_2^{(i)} \]

\[\phi^{(i,j)} = \psi^{(i)} + \psi^{(j)} \]

where \(\nu^{(i)} \) and \(\nu^{(j)} \) are related by a dependance direction
Canonical Solution

\[a\lambda_1 + b\lambda_2 = 0 \]

\[(\lambda_1, \lambda_2) = (1, 0), \quad \text{if} \quad a = 0 \]

\[(\lambda_1, \lambda_2) = (0, 1), \quad \text{if} \quad b = 0 \]

\[(\lambda_1, \lambda_2) = (b, -a), \quad \text{if} \quad a, b \neq 0 \text{ and } b > 0 \]

\[(\lambda_1, \lambda_2) = (-b, a), \quad \text{if} \quad a, b \neq 0 \text{ and } b < 0 \]
A Set: Set of all canonical solutions to the ψ equations and ϕ equations.

Every canonical solution determines a λ plane.

Theorem: S intersects V if and only if every λ plane intersects V.

Algorithm

- Determine the ψ equations and ϕ equations
- Determine the Λ set
- Each element of Λ set determines a λ plane
- Each λ plane is tested to see if intersects V by checking its max and min values
- If any one of the λ planes does not intersect V we stop
\[f_{\lambda_1, \lambda_2} = (2\lambda_1 + 3\lambda_2)x_1 + (3\lambda_1 + \lambda_2)x_2 \\
+(-\lambda_1 - 2\lambda_2)x_3 + (\lambda_1 + \lambda_2)x_4 = 0 \]

\(\psi \) Equations:
\[2\lambda_1 + 3\lambda_2 = 0 \]
\[3\lambda_1 + \lambda_2 = 0 \]
\[-\lambda_1 - 2\lambda_2 = 0 \]
\[\lambda_1 + \lambda_2 = 0 \]
\(\Lambda = (3, -2), (1, -3), (2, -1), (1, -1) \)

Consider the loop bounds:
\[
1 \leq x_1, x_3 \leq 50, \quad 2 \leq x_2, x_4 \leq 50
\]

Here, \((3, -2)\) shows the absence of data dependence and hence we stop and do not consider the next \(\lambda\) planes
\[i_1 = j_2 \]
\[j_1 = i_2 \]
\[1 \leq i_1, i_2, j_1, j_2 \leq 100 \]
\[i_1 = i_2, \; j_1 < j_2 \]
\[f_{\lambda_1, \lambda_2} = (\lambda_1 + 0\lambda_2)i_1 + (0\lambda_1 + \lambda_2)j_1 + (-\lambda_1 + 0\lambda_2)j_2 + (0\lambda_1 - \lambda_2)i_2 = 0 \]

\[\psi \quad \text{Equations:} \]
\[\lambda_1 + 0\lambda_2 = 0 \]
\[0\lambda_1 + \lambda_2 = 0 \]
\[-\lambda_1 + 0\lambda_2 = 0 \]
\[0\lambda_1 - \lambda_2 = 0 \]
\[\lambda = \textit{test} \]

\[
\begin{align*}
\phi \quad \text{Equations:} \\
\lambda_1 - \lambda_2 &= 0 \\
-\lambda_1 + \lambda_2 &= 0
\end{align*}
\]

\[\Lambda = (1, 0), (0, 1), (1, 1) \]

Consider the loop bounds:

\[1 \leq x_1, x_3 \leq 50, \quad 2 \leq x_2, x_4 \leq 50 \]

Here, \((1, 1)\) shows the absence of data dependence and hence we stop
Discussed λ test and examined that it is better than previous Numerical methods
[1] An Efficient Data Dependence Analysis for Parallelizing Compilers, Zhiyuan Li and Pen-Chung Yew and Chuan-Qi Zhu
IEEE Transactions on Parallel and Distributed Systems, 1990