SmartStore Reducing cost under Demand based Static Pricing Scheme -Swapnil Kasaliwal

Introduction

- Need for Demand-based Pricing Scheme.
- Types of Demand-based Pricing Scheme.
 Dynamic Demand-based Pricing Scheme.
 Static Demand-based Pricing Scheme.
- Potential Drawbacks of Dynamic Pricing.
- Hence, need of Static Pricing.

Introduction

- Peak shaving- A way to reduce electricity cost under Static Pricing Scheme.
- SmartStore A peak shaving algorithm.
 - Can be used for reducing electricity cost under Static pricing scheme.

SmartStore - Assumptions

- Billing interval divided into slots.
- Unbounded Battery
- No restriction on charge rate and discharge rate.
- Demand prediction available before start of billing interval
- Zero Battery losses.

SmartStore Algorithm

Mean Demand

$$\mu(\mathbf{j},\mathbf{k}) = \frac{1}{k-j+1} \sum_{t=j}^{k} d_{t}$$

- Maximum Mean Demand in prefix region is selected as threshold for that region.
- The process is followed for all other subsequent subintervals.
- Example

SmartStore Algorithm

- Threshold calculation is done before start of billing interval.
- At the start of billing interval, threshold is associated with each slot.
- In a slot, energy from grid = threshold for slot.
- If threshold > Actual Demand, store extra energy into battery.
- If threshold < Actual Demand, take extra energy from battery.

DEMAND BASED STATIC PRICING

Exponential Pricing Scheme

$$E = \sum_{t=1}^{n} d_t^x$$

- n = number of slots
- d_t = demand in slot t
- x = exponent, x > 1

Slab-based Pricing Scheme

$$E = P * \sum_{t=1}^{n} \sum_{s=1}^{S} F_s * \min(\max(d_t - L_s, 0)U_s))$$

- S = number of slabs.
- $U_s = Upper$ threshold of slab s.
- $L_s =$ Lower threshold of slab s.
- $F_s = Unit$ scale for slab s.
- P = price per unit of electricity.

COST SAVING WITH SMARTSTORE

Results with Accurate Prediction

Exponential Pricing, MAPE = 0

Slab-based Pricing, MAPE = 0

Results with OverPrediction

Exponential Pricing, MAPE = 9.87, MPE = 5.05

Results with Underprediction

Exponential Pricing, MAPE = 10.01, MPE = -4.92

COMPENSATING FOR MISPREDICTION

Compensating for Misprediction

- Overprediction
 - Using previous day's extra charge in calculation of thresholds
 - Extra energy spread in all the slots of day
- Underprediction
 - Sharing batteries between two buildings
 - The benefit depends on sharing policies
 - Many sharing policies possible.

Cost Saving with SmartStore-MP

DS 6, MAPE= 9.97, MPE = 2.27 DS 7, MAPE = 9.92, MPE = -4.91

OTHER RESULTS

Other Results

Bounded Battery

 Cost saving does not improve beyond certain threshold battery size

- Battery Losses
 - Higher cost reduction with higher battery efficiency

 Need to take extra energy to run SmartStore smoothly

Project Suggestions

- Sharing Batteries with multiple neighbors.
- Effect of sharing batteries with slab based pricing.
- Compensating battery losses.
- Study project on batteries compatible to SmartStore.