SmartStore Reducing cost under
 Demand based Static Pricing Scheme
 -Swapnil Kasaliwal

Introduction

- Need for Demand-based Pricing Scheme.
- Types of Demand-based Pricing Scheme. - Dynamic Demand-based Pricing Scheme.
- Static Demand-based Pricing Scheme.
- Potential Drawbacks of Dynamic Pricing.
- Hence, need of Static Pricing.

Introduction

- Peak shaving- A way to reduce electricity cost under Static Pricing Scheme.
- SmartStore - A peak shaving algorithm.
- Can be used for reducing electricity cost under Static pricing scheme.

SmartStore - Assumptions

- Billing interval divided into slots.
- Unbounded Battery
- No restriction on charge rate and discharge rate.
- Demand prediction available before start of billing interval
- Zero Battery losses.

SmartStore Algorithm

- Mean Demand

$$
\mu(\mathrm{j}, \mathrm{k})=\frac{1}{k-j+1} \sum_{t=j}^{k} d_{t}
$$

- Maximum Mean Demand in prefix region is selected as threshold for that region.
- The process is followed for all other subsequent subintervals.
- Example

SmartStore Algorithm

- Threshold calculation is done before start of billing interval.
- At the start of billing interval, threshold is associated with each slot.
- In a slot, energy from grid = threshold for slot.
- If threshold > Actual Demand, store extra energy into battery.
- Ifthreshold < Actual Demand, take extra energy from battery.

SmartStore Implementation Accuarate

 Prediction

SmartStore Implementation - Actual

 Prediction

DEMAND BASED STATIC PRICING

Exponential Pricing Scheme

$$
E=\sum_{t=1}^{n} d_{t}^{x}
$$

- $\mathrm{n}=$ number of slots
- $d_{t}=$ demand in slot t
- $x=$ exponent, $x>1$

Slab-based Pricing Scheme

$$
E=P * \sum_{t=1}^{n} \sum_{s=1}^{S} F_{s} * \min \left(\max \left(d_{t}-L_{s}, 0\right) U_{s}\right)
$$

- $S=$ number of slabs.
- $\mathrm{U}_{\mathrm{s}}=$ Upper threshold of slab s .
- $L_{s}=$ Lower threshold of slab s.
- $F_{s}=$ Unit scale for slab s.
- $P=$ price per unit of electricity.

GOST SAVING WITH SMARTSTORE

Results with Accurate Prediction

Exponential Pricing, MAPE $=0$

Results with Accurate Prediction

Slab-based Pricing, MAPE $=0$

Results with OverPrediction

Exponential Pricing, $\mathrm{MAPE}=9.87, \mathrm{MPE}=5.05$

Results with Underprediction

Exponential Pricing, MAPE $=10.01, \mathrm{MPE}=-4.92$

GOMPENSATING FOR MISPREDICTION

Compensating for Misprediction

- Overprediction
- Using previous day's extra charge in calculation of thresholds
- Extra energy spread in all the slots of day
- Underprediction
- Sharing batteries between two buildings
-The benefit depends on sharing policies
- Many sharing policies possible.

Cost Saving with SmartStore-MP

DS 6, $\mathrm{MAPE}=9.97, \mathrm{MPE}=2.27$
DS 7, $\mathrm{MAPE}=9.92, \mathrm{MPE}=-4.91$

OTHER RESULTS

Other Results

- Bounded Battery
- Cost saving does not improve beyond certain threshold battery size
- Battery Losses
- Higher cost reduction with higher battery efficiency
=Need to take extra energy to run SmartStore smoothly

Project Suggestions

- Sharing Batteries with multiple neighbors.
- Effect of sharing batteries with slab based pricing.
- Compensating battery losses.
- Study project on batteries compatible to SmartStore.

