Communication Network Analysis in Wide Area Measurement System

Kedar Khandeparkar
Gelli Ravikumar
Udhav Arote
(Group 8)

May 3, 2013
Table of contents

1. Motivation
2. Approach
3. Case Studies
4. Conclusion
Every power system application (SE, Transient Stability etc.) has its own time requirements to process and respond.
Motivation

- Every power system application (SE, Transient Stability etc.) has its own time requirements to process and respond
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications
Every power system application (SE, Transient Stability etc.) has its own time requirements to process and respond.

- In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications.
- System operators must perform an action according to the grid disturbance within its threshold time.
Motivation

- Every power system application (SE, Transient Stability etc.) has its own time requirements to process and respond
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications
- System operators must perform an action according to the grid disturbance within its threshold time
 - Threshold time includes end-to-end delay of communication network, power system applications processing time, decision time
Motivation

- Every power system application (SE, Transient Stability etc.) has its own time requirements to process and respond.
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications.
- System operators must perform an action according to the grid disturbance within its threshold time.
 - Threshold time includes end-to-end delay of communication network, power system applications processing time, decision time.
- In this project the significant artifact is the end-to-end delay.
 - Need to ensure the latency requirements of applications are met.
Scope of this project: Analysis of end-to-end communication delay in WAMS

Communication architecture for WAMS
Project Timeline

<table>
<thead>
<tr>
<th>Plan</th>
<th>Plan phases and implementation</th>
<th>10 days</th>
<th>10 days</th>
<th>10 days</th>
<th>10 days</th>
<th>10 days</th>
<th>10 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of NS 2 Simulator</td>
<td>Understanding architecture, components, and its existing input-output interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creating sample models for dive more into NS 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modeling of generic communication components in the NS 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating generalize NS 2 wrapper for WAMS</td>
<td>Design of input configuration format where WAMS communication can be modeled without interaction with simulation software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design of python scripts where it import config and exports system needed .tcl scripts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validation and testing of the wrapper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model WAMS communication scenarios through developed NS 2 wrapper</td>
<td>Literature survey on WAMS communication systems and prepare the exhaustive list of its protocols, components, and other network elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model IEEE 14 bus system through wrapper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validate and test the system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observe the Bandwidth and Latency (Bal.) requirements, and its analysis on few WAMS applications</td>
<td>Get the Bal for the designed model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of the model: as varying communication parameters and traffics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Document the project with all above scenarios and results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two node communication in Ns 2 (phase 1)

Basic Components in modeling communication between two nodes
Methodology (phase 2)

Input Configuration file → Python wrapper → Tcl script → Ns 2 simulation → Analysis

Methodology for Analysis of PMU Communication Network

Kedar Khandeparkar Gelli Ravikumar UdHAV Arote (Group 8)

Abbrev. Title
Structure of configuration file

Distribution: name,id,parameters
Processing_delay: id,distribution_id
Traffic: traffic_id,type_of_traffic,flow_id,rate, packet size
Agent: agent_id,agent_type,traffic_id
Node: id,node_type,agent_id
Link: link_id,src_id,dst_id,bandwidth,propagation_delay, queuing principle, queue size
UML class diagram for Ns2 patch

Motivation
Approach
Case Studies
Conclusion
NS 2 patch

- Implemented two classes, \textit{PMUApp} and \textit{PDCApp} that extend \textit{Application} class of ns 2
- \textit{PDCApp} maintains a fixed size timestamp buffer (TSB)
- The timeout and processing delay of PMU packet is modeled as a normal distribution.
Case Study- 14 bus system (phase 3)
Simulation Setup for 14 bus system

- 14 PMUs placed at each substation
- Link capacity between PMU-PDC and PDC-SPDC: 1Mb/s
- Propagation delay: 1ms
- Scenarios: link failure, node error
- Simulation duration: 10s
- Link Failure for 2 secs (6.0s to 8.0s)
- Error model: uniform distribution
Link failure between Node 2 & Node 14

Error modeling Node 14
Results of 14 bus system simulation

\[\text{Loss} = \left(\frac{S_p - D_p}{S_p} \right) \times 100 \]

\(S_p, \ D_p \) are the packets generated at source and received at the destination respectively.
Case Study- Power Grid of India (Pilot projects)

- **PMU Locations**
 - Vindhyachal
 - Kanpur
 - Moga
 - Hisar
 - Dadri
 - Bassi
 - Agra
 - Kishenpur
 - Karcham Wangtoo

- **SPDC Location**
 - NLDC Delhi

- **PDC Location**
 - NRLDC Delhi
 - WRLDC Mumbai
 - SRLDC Bengaluru
 - NERLDC Shilong
 - ERLDC Kolkata

PMU Locations

PDC Locations

Locations

- 40 PMUs
- 5 PDCs
- 1 SPDC

+ Locations where PMUs are yet to be installed
Simulation Setup

- Nodes in the network: 40 PMUs, 5 PDCs and 1 SPDC
- Link bandwidth: OC-3 (155 Mb/s)
- Propagation delay: Based on geographical distances between the nodes
- Simulation duration: 10s
- Link Failure for 2 secs (6.0s to 8.0s)
- Error model: uniform distribution
Results (Indian Pilot projects)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Average Latency (ms)</th>
<th>Link Failure (Loss %)</th>
<th>Error Model (Loss %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmu-pdc</td>
<td>4.0</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>pdc-spdc</td>
<td>7.2</td>
<td>0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Table: Network simulation results for Indian Power Grid
The ns2 wrapper with ns 2 patch enables verifying the efficiency of any designed PMU communication network without explicitly coding each scenario.

Multiple designs can then be compared with each other to come up with a robust and scalable network design that meets the latency requirements of the applications.
Future Work

- Study the impact of latency on the power system applications
- Verify the simulation results with realistic scenarios

