Email Classification using Co-Training

Harshit Chopra (02005001)
Kartik Desikan (02005103)
Motivation

- Internet has grown vastly
- Widespread usage of emails
- Several emails received per day (~100)
- Need to organize emails according to user convenience
Classification

- Given training data \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \)
- Produce classifier \(h : X \rightarrow Y \)
- \(h \) maps object \(x_i \) in \(X \) to its classification label \(y_i \) in \(Y \)
Features

- Measurement of some aspect of given data
- Generally represented as binary functions
- Eg: Presence of hyperlinks is a feature
- Presence indicated by 1, and absence by 0.
Email Classification

- Email can be classified as:
 - Spam and non-spam, or
 - Important or non-important, etc

- Text represented as bag of words:
 1. words from headers
 2. words from bodies
Supervised learning

- Main tool for email management: text classification
- Text classification uses supervised learning
- Examples belonging to different classes is given as training set
- Eg: Emails classified as interesting and uninteresting
- Learning systems induce general description of these classes
Supervised Classifiers

- Naïve Bayes Classifier
- Support Vector Machines (SVM)
Naïve Bayes

- According to Bayes Theorem,

\[P(\text{Class} \mid \text{Doc}) = \frac{P(\text{Class})P(\text{Doc} \mid \text{Class})}{P(\text{Doc})} \]

- Under naïve conditional independence assumption,

\[P(\text{Doc} \mid \text{Class}) = P(a_1, \ldots, a_n \mid \text{Class}) = \prod_{i=1}^{n} P(a_i \mid \text{Class}) \]
Naïve Bayes

- Classify text document according to

\[
\max_j P(Class_j) \prod_{i=1}^{n} P(a_i | Class_j)
\]

- E.g. \(Class = \{Interesting, Junk\}\)
Linear SVM

- Creates *Hyperplane* separating data in 2 classes with max separation
Problems with Supervised Learning

- Requires lot of training data for accurate classification
- Eg: Microsoft Outlook Mobile Manager requires ~600 emails as labeled examples for best performance
- Very tedious job for average user
One solution

- Look at user’s behavior to determine important emails
- E.g.: Deleting mails without reading might be an indication of junk
- Not reliable
- Requires time to gather information
Another solution

- Use semi-supervised learning
- Few labeled data coupled with large unlabeled data
- Possible algorithms
 - Transductive SVM
 - Expectation Maximization (EM)
 - Co-Training
Co-Training Algorithm

- Based on idea that some features are redundant – “redundantly sufficient”
 1. Split features into two sets, F_1 and F_2
 2. Train two independent classifiers, C_1 and C_2, one for each feature set
 3. Produce two initial weak classifiers using minimum labeled data
Co-Training Algorithm

4. Each classifier C_i examines unlabeled examples and labels them

5. Add most confident +ve and −ve examples to set of labeled examples

6. Loop back to Step 2
Intuition behind Co-Training

- One classifier confidently predicts class of an unlabeled example
- In turn, provides one more training example to other classifier
- E.g.: Two messages with subject
 1. “Company meeting at 3 pm”
 2. “Meeting today at 5 pm?”
Given: 1st message classified as “meeting”

Then, 2nd message is also classified as “meeting”

Messages likely to have different body content

Hence, classifier based on words in body provided with extra training example
Co-Training on Email Classification

- Assumption: presence of redundantly sufficient features describing data
- Two sets of features:
 1. words from subject lines (header)
 2. words from email bodies
Experiment Setup

- 1500 emails and 3 folders
- Division as 250, 500 and 750 emails
- Division into 3 classification problems where ratio of +ve : -ve examples are
 - 1:5 (highly imbalanced problem)
 - 1:2 (moderately imbalanced problem)
 - 1:1 (balanced problem)
- Expected: Larger the imbalance, worse the learning results
Experiment Setup

- For each task 25% of examples left as test set
- Rest is training set with labeled and unlabeled data
- Random selection of labeled data
- Stop words removed and Stemmer used
- These pre-processed words form the feature set
- For each feature/word, frequency of the word is the feature value
Experiment Run

- 50 co-training iterations
- Appropriate training examples supplied in each iteration
- Results represent average of 10 runs of the training
- Learning algorithms used:
 - Naïve Bayes
 - SVM
Results 1: Co-training with Naïve Bayes

<table>
<thead>
<tr>
<th></th>
<th>Absolute difference between accuracy in 1st and 50th iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject-based classifier</td>
</tr>
<tr>
<td>(1:5) Highly imbalanced problem</td>
<td>-17.11%</td>
</tr>
<tr>
<td>(1:2) Moderately imbalanced problem</td>
<td>-9.41%</td>
</tr>
<tr>
<td>(1:1) Balanced problem</td>
<td>0.78%</td>
</tr>
</tbody>
</table>
Inference from Result 1

- Naïve Bayes performs badly
- Possible reasons:
 - Violation of conditional independence of feature sets.
 - Subject and bodies not redundant. Need to be used together
 - Great sparseness among feature values
Result 2: Co-training with Naïve Bayes and feature selection

<table>
<thead>
<tr>
<th>Relative Imbalance</th>
<th>Absolute difference between accuracy in 1<sup>st</sup> and 50<sup>th</sup> iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject-based classifier</td>
</tr>
<tr>
<td>(1:5) Highly imbalanced problem</td>
<td>-1.09%</td>
</tr>
<tr>
<td>(1:2) Moderately imbalanced problem</td>
<td>1.62%</td>
</tr>
<tr>
<td>(1:1) Balanced problem</td>
<td>1.54%</td>
</tr>
</tbody>
</table>
Inference from Result 2

- Naïve Bayes with feature selection works lot better
- Feature sparseness likely cause of poor result of co-training Naïve Bayes
Result 3: Co-training with SVM

<table>
<thead>
<tr>
<th>Imbalance Level</th>
<th>Subject-based classifier</th>
<th>Body-based classifier</th>
<th>Combined classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1:5) Highly imbalanced problem</td>
<td>0.28%</td>
<td>1.80%</td>
<td>1.80%</td>
</tr>
<tr>
<td>(1:2) Moderately imbalanced problem</td>
<td>14.89%</td>
<td>22.47%</td>
<td>17.42%</td>
</tr>
<tr>
<td>(1:1) Balanced problem</td>
<td>12.36%</td>
<td>15.84%</td>
<td>18.15%</td>
</tr>
</tbody>
</table>
Inference from Result 3

- SVM clearly outperforms Naïve Bayes
- Works well for very large feature sets
Conclusion

- Co-training can be applied to email classification
- Depends on learning method used
- SVM performs quite well as a learning method for email classification
References

- S Kiritchenko, S Matwin: *Email classification with co-training*, In Proc. of CASCON, 2001