

Elements of Neuronal Biophysics

The human brain

Seat of consciousness and cognition

Perhaps the most complex information processing machine in nature

Historically, considered as a monolithic information processing machine

Brain : a computational machine?

Information processing: brains vs computers

- brains better at perception / cognition
- slower at numerical calculations
- Evolutionarily, brain has developed algorithms most suitable for survival
- Algorithms unknown: the search is on
- Brain astonishing in the amount of information it processes
 - Typical computers: 10⁹ operations/sec
 - Housefly brain: 10¹¹ operations/sec

Brain facts & figures

- Basic building block of nervous system: nerve cell (neuron)
- ~ 10^{12} neurons in brain
- ~ 10^{15} connections between them
- Connections made at "synapses"
- The speed: events on millisecond scale in neurons, nanosecond scale in silicon chips

Neuron - "classical"

Dendrites

- Receiving stations of neurons
- Don't generate action potentials
- Cell body
 - Site at which information received is integrated
- Axon
 - Generate and relay action potential
 - Terminal
 - Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Membrane Biophysics: Overview

Part 1: Resting membrane potential

Resting Membrane Potential

Measurement of potential between ICF and ECF

- $\mathbf{V}_{\mathrm{m}} = \mathbf{V}_{\mathrm{i}} \mathbf{V}_{\mathrm{o}}$
- ICF and ECF at isopotential separately.
- ECF and ICF are different from each other.

Resting Membrane Potential - recording

 Electrode wires can not be inserted in the cells without damaging them (cell membrane thickness: 7nm)

- Solution: Glass microelectrodes (Tip diameter: 10 nm)
 - Glass \rightarrow Non conductor
 - Therefore, while pulling a capillary after heating, it is filled with KCl and tip of electrode is open and KCl is interfaced with a wire.

R.m.p. - towards a theory

Ionic concentration gradients across biological cell membrane

Mammalian muscle ($rmp = -75 \text{ mV}$)			
	ECF	ICF	
Cations			
Na ⁺	145 mM	12 mM	
K ⁺	4 mM	155 mM	
Anions			
Cl-	120 mM	4 mM	

Frog muscle (rmp = -80 mV)			
	ECF	ICF	
Cations			
Na ⁺	109 mM	4 mM	
K ⁺	2.2 mM	124 mM	
Anions			
Cl-	77 mM	1.5 mM	

Trans-membrane Ionic Distributions

Resting potential as a K⁺ equilibrium (Nernst) potential

Resting Membrane Potential: Nernst Eqn

Nernst Equations

$$\mathcal{V}_m = \frac{RT}{F} \left\{ \frac{[K^+]_o}{[K^+]_i} \right\} = E_K$$

Consider values for typical concentration ratios

$$V_m = \frac{RT}{F} \left\{ \frac{[Na^+]_o}{[Na^+]_i} \right\} = E_{Na}$$

 $E_{K} = -90 \text{ mV}$ $E_{Na} = +60 \text{ mV}$

$$V_m = \frac{RT}{F} \left\{ \frac{[Cl^-]_i}{[Cl^-]_o} \right\} = E_{Cl}$$

 $r.m.p. = \{-60 \text{ to } -80\} \text{ mV}$

Goldman-Hodgkin-Katz (GHK) eqn

Resting Membrane Potential approximated by the GHK eq.

$$V_{m} = \frac{RT}{F} \ln \left\{ \frac{P_{K}[K^{+}]_{o} + P_{Na}[Na^{+}]_{o}}{P_{K}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i}} \right\}$$

If $P_K >> P_{Na}$

$$V_m = \frac{RT}{F} \left\{ \frac{\left[K^+\right]_o}{\left[K^+\right]_i} \right\} = E_K$$

If $P_{Na} \gg P_{K}$ $V_{m} = \frac{RT}{F} \left\{ \frac{[Na^{+}]_{o}}{[Na^{+}]_{i}} \right\} = E_{Na}$

Taking values of R,T &F and dividing throughout by P_{K} :

$$V_m = 58 \log \left\{ \frac{[K^+]_o + \alpha [Na^+]_o}{[K^+]_i + \alpha [Na^+]_i} \right\} \text{mV}, \quad \alpha = \frac{P_{\text{Na}}}{P_{\text{K}}}$$

Consider α = V. large, v. small, and intermediate

Equivalent Circuit Model: Resting Membrane

Out V_m E_{Na} E_K C_m

In

$$I_{Na} = (V_m - E_{Na})g_{Na}$$

$$I_K = (V_m - E_K)g_K$$
At steady state, $I_{Na} = I_K$
Therefore, $V_m = \frac{E_{Na}g_{Na} + E_Kg_K}{g_{Na} + g_K}$

Membrane Biophysics: Overview

Part 2: Action potential

ACTION POTENTIAL

1

->

Inhibitory stimulus

ACTION POTENTIAL: Ionic mechanisms

Action Potential: Na⁺ and K⁺ Conductance

$$g_{K}\left(V_{m},t\right) = \overline{g_{K}}\left\{n\left(V_{m},t\right)\right\}^{4}$$
$$g_{Na}\left(V_{m},t\right) = \overline{g_{Na}}\left\{m\left(V_{m},t\right)\right\}^{3}h\left(V_{m},t\right)$$

Membrane Biophysics: Overview

Part 3: Synaptic transmission & potentials

"Canonical" neurons: Neuroscience

Chemical Transmission

Postsynaptic Electrical Effects

Synaptic Integration: The Canonical Picture

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.