CS623: Introduction to Computing with Neural Nets

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

The human brain

Seat of consciousness and cognition

Perhaps the most complex information processing machine in nature

Historically, considered as a monolithic information processing machine

Beginner's Brain Map

Brain : a computational machine?

Information processing: brains vs computers

- brains better at perception / cognition
- slower at numerical calculations
- parallel and distributed Processing
- associative memory

Brain : a computational machine? (contd.)

- Evolutionarily, brain has developed algorithms most suitable for survival
- Algorithms unknown: the search is on
- Brain astonishing in the amount of information it processes
 - Typical computers: 10⁹ operations/sec
 - Housefly brain: 10¹¹ operations/sec

Brain facts & figures

- Basic building block of nervous system: nerve cell (neuron)
- $\sim 10^{12}$ neurons in brain
- $\sim 10^{15}$ connections between them
- Connections made at "synapses"
- The speed: events on millisecond scale in neurons, nanosecond scale in silicon chips

Neuron - "classical"

- Dendrites
 - Receiving stations of neurons
 - Don't generate action potentials
- Cell body
 - Site at which information received is integrated
- Axon
 - Generate and relay action potential
 - Terminal
 - Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Computation in Biological Neuron

- Incoming signals from synapses are summed up at the soma
- Σ , the biological "inner product"
- On crossing a threshold, the cell "fires" generating an action potential in the axon hillock region

Synaptic inputs: Artist's conception

The biological neuron

Pyramidal neuron, from the amygdala (Rupshi *et al.* 2005)

A CA1 pyramidal neuron (Mel *et al*. 2004)

A perspective of Al Artificial Intelligence - Knowledge based computing Disciplines which form the core of AI - inner circle Fields which draw from these disciplines - outer circle.

Symbolic Al

Connectionist AI is contrasted with Symbolic AI Symbolic AI - Physical Symbol System Hypothesis Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary.

Symbolic AI has a bearing on models of computation such as Turing Machine Von Neumann Machine Lambda calculus

Turing Machine & Von Neumann Machine

Challenges to Symbolic Al

Motivation for challenging Symbolic AI A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers!

The Differences

Brain computation in living beings Pattern Recognition Learning oriented Distributed & parallel processing Content addressable TM computation in computers Numerical Processing Programming oriented Centralized & serial processing Location addressable

Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Step function / Threshold function y = 1 for $\Sigma w_i x_i \ge \theta$ =0 otherwise

Features of Perceptron

• Input output behavior is discontinuous and the derivative does not exist at $\Sigma w_i x_i = \theta$

- $\Sigma w_i x_i \theta$ is the net input denoted as net
- Referred to as a linear threshold element linearity because of x appearing with power 1
- **y= f(net)**: Relation between y and net is non-linear

Computation of Boolean functions

AND of 2 inputs

X1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights & thresholds) need to be found.

Computing parameter values

w1 * 0 + w2 * 0 <=
$$\theta \rightarrow \theta \ge 0$$
; since y=0
w1 * 0 + w2 * 1 <= $\theta \rightarrow w2 <= \theta$; since y=0
w1 * 1 + w2 * 0 <= $\theta \rightarrow w1 <= \theta$; since y=0
w1 * 1 + w2 * 1 > $\theta \rightarrow w1 + w2 > \theta$; since y=1
w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

 OR can be computed using values of w1 = w2 = 1 and = 0.5

XOR function gives rise to the following inequalities:

 $w1 * 0 + w2 * 0 <= \theta \rightarrow \theta >= 0$ $w1 * 0 + w2 * 1 > \theta \rightarrow w2 > \theta$ $w1 * 1 + w2 * 0 > \theta \rightarrow w1 > \theta$ $w1 * 1 + w2 * 1 <= \theta \rightarrow w1 + w2 <= \theta$

No set of parameter values satisfy these inequalities.

Threshold functions

n # Boolean functions (2^2^n) **#**Threshold Functions (2ⁿ²)

1	4	4
2	16	14
3	256	128
7	64K	1008

- Functions computable by perceptrons threshold functions
- #TF becomes negligibly small for larger values of #BF.
- For n=2, all functions except XOR and XNOR are computable.

Concept of Hyper-planes

• $\sum w_i x_i = \theta$ defines a linear surface in the (W,θ) space, where $W = \langle w_1, w_2, w_3, \dots, w_n \rangle$ is an n-dimensional vector.

 \mathbf{X}_1

• A point in this (W,θ) space defines a perceptron.

X_n

Perceptron Property

• Two perceptrons may have different parameters but same functional values.

Example of the simplest perceptron

 w.x>0 gives y=1
 w.x≤0 gives y=0

 Depending on different values of

 w₁
 w and θ, four different functions are x₁

Simple perceptron contd.

Counting the number of functions for the simplest perceptron

- For the simplest perceptron, the equation is w.x=θ.
- Substituting x=0 and x=1, we get θ =0 and w= θ . These two lines intersect to ______ form four regions, which $\overset{R3}{\checkmark}$ correspond to the four functions.

Fundamental Observation

 The number of TFs computable by a perceptron is equal to the number of regions produced by 2ⁿ hyper-planes, obtained by plugging in the values <x₁,x₂,x₃,...,x_n> in the equation

$$\sum_{i=1}^{n} w_i x_i = \theta$$

The geometrical observation

 Problem: m linear surfaces called hyperplanes (each hyper-plane is of (d-1)-dim) in d-dim, then what is the max. no. of regions produced by their intersection?
 i.e. R_{m,d} = ?

Perceptron Training Algorithm (PTA)

Preprocessing:

2. The computation law is modified to y = 1 if $\sum w_i x_i > \theta$ y = 0 if $\sum w_i x_i < \theta$

PTA – preprocessing cont... 2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron
- 1-class <1,1>, <1,0>, <0,1> 0-class <0,0>
- Augmented x vectors:-1-class <-1,1,1> , <-1,1,0> , <-1,0,1> 0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

Perceptron Training Algorithm

- 1. Start with a random value of w ex: <0,0,0...>
- 3. Test for $wx_i > 0$

If the test succeeds for i=1,2,...n then return w

3. Modify w, $w_{next} = w_{prev} + x_{fail}$

Tracing PTA on OR-example

- w=<0,0,0>
- w=<-1,0,1>
- w=<0,0,1>
- w=<-1,1,1>
- w=<0,1,2>
- w=<1,1,2>
- w=<0,2,2>
- w=<1,2,2>

wx₁ fails wx₄ fails wx₂ fails wx₁ fails wx₄ fails wx₂ fails wx₄ fails **SUCCESS**

Assignment

- Implement the perceptron training algorithm
- Run it on the 16 Boolean Functions of 2 inputs
- Observe the behaviour
 - Take different initial values of the parameters
 - Note the number of iterations before convergence
 - Plot graphs for the functions which converge