CS623: Introduction to
Computing with Neural Nets
(lecture-10)

Pushpak Bhattacharyya

Computer Science and Engineering
Department

lIT Bombay



Tiling Algorithm (repeat)

A kind of divide and conquer strategy

Given the classes in the data, run the
perceptron training algorithm

If linearly separable, convergence without
any hidden layer

If not, do as well as you can (pocket
algorithm)

This will produce classes with
misclassified points



Tiling Algorithm (contd)

Take the class with misclassified points and
break into subclasses which contain no outliers

Run PTA again after recruiting the required
number of perceptrons

Do this until homogenous classes are obtained

Apply the same procedure for the first hidden
layer to obtain the second hidden layer and so
on



lllustration

« XOR problem
 Classes are



As best a classification as possible
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How to achieve this classification

* Give the labels as shown: eqv to an OR
problem

outlier



The partially developed n/w
* Get the first neuron in the hidden layer,

which computes OR
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Break the incorrect class
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Solve classification for h,
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Next stage of the n/w
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Getting the output layer

« Solve a tiling algo
problem for the
hidden layer

AND problem
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AND n/w

Computes x,X,

h,
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Lab exercise

Implement the tiling algorithm and run it for
1. XOR

2. Majority

3. IRIS data



Hopfield net

Inspired by associative memory which means
memory retrieval is not by address, but by part

of the data.
Consists of
N neurons fully connected with
symmetric weight strength w;; = w;
No self connection. So the weight matrix is O-

diagonal and symmetric.

Each computing element or neuron is a linear
threshold element with threshold = 0.



Computation

Figure: A neuron in the Hopfield Net.



Example

Wip = Wpq =
Wiz = W3y = 3
W3 = W3y = 2

At time t=0
S4(t) =1
S,(t) = -1
S,(t) =1

Unstable state: Neuron 1 will flip.
A stable pattern is called an
attractor for the net.

Figure: An example Hopfield Net



Stability

Asynchronous mode of operation: at any instant a
randomly selected neuron compares the net input with
the threshold.

In the synchronous mode of operation all neurons
update themselves simultaneously at any instant of
time.

Since there are feedback connections in the Hopfield
Net the question of stability arises. At every time
instant the network evolves and finally settles into a
stable state.

How does the Hopfield Net function as associative
memory ?

One needs to store or stabilize a vector which is the
memory element.



Energy consideration

Stable patterns correspond to minimum
energy states.

Energy at state <x., x,, X3, ..., X,>

E=-1/2% 3 W;XX

Change in energy always comes out to be
negative in the asynchronous mode of

operation. Energy always decreases.
Stability ensured.



Hopfield Net is a fully connected
network

« it" neuron is connected to (n-1) neurons



Concept of Energy

* Energy at state s is given by the equation:

E(s) = —|w,xx, + w,x,x, +...+ W, x,x,

+ Wy Xy Xy . W, XX+

+Wn—1)n n—l) nJ



Connection matrix of the network,
0-diagonal and symmetric

0 — diagonal



State Vector

* Binary valued vector: value is either 1 or -1
X=X, Xpq -« - X3 Xy, X4

* e.g. Various attributes of a student can be
represented by a state vector

address

height

roll number

Ram =1
~(Ram) = -1

hair color



Relation between weight vector W

and state vector X

w . X7
Weight vector Transpose of state vector

For example, in figure 1,
At time t = 0, state of the neural network is:
s(0) = <1, -1, 1> and corresponding vectors are as shown.
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W.XT gives the inputs to the
neurons at the next time instant

7 (0 5 3] [1
W o X — (5 0 2| |-1
3 2 0] |1
_2‘
=7
1
-1 This shows that the
sen(W.X")=|1 n/w will change state
1




Energy Consideration

At time t = 0, state of the neural network is:
s(0) =<1, -1, 1>

1 > 1

 E(0) = 5 1)@ 1" 1)+(2-171)] = 4

-1
The state of the neural network under
stability is <-1, -1, -1>

-1 > -1

E(stable state) = - -[(5*-1*-1)+(3*-1* -1)+(2*-1*-1)] = -10



State Change

« 5(0)=<1,-1,1...>
* 5(1) = compute by comparing and summing
* X4(t=1)=sgn[2;_,"w,x]

=1if2;.,"w;x; >0

= -1 othervv/se



Theorem

* In the asynchronous mode of operation,
the energy of the Hopfield net always
decreases.

* Proof:

E(t) = —[W12X1(t1)xz(t1) + wisxi(t)x3(t1) + ...+ winxi(£1) xa(21)

+ wax2(t)x3(t1) + ... + wanx2(t1) xa(t1) +

+ Wn - DX (n - 1)(t1)xn(t1)]



Proof

* Let neuron 1 change state by summing and comparing
* We get following equation for energy

E(t2) = —[m axi(22)x2(22) + wisxi(t2)x3(22) +. . .+ wWinxi(t2) xa(22)

+ wasxa(t2)x3(t2) + ... + wanx2(t2) xn(t2) +

+ W(n. st 1)(t2)xn(t2)]



Proof: note that only neuron 1 changes state

AE = E(t2) — E(th)
— _{[lexl(tz)xz (tz) + W13x1(t2)x3 (t2) T Wlnxl(tz)x” (tz)]

— [, (82, (1) + WX, ()%, (1) + ..+ Wy, %, (8)x, (1)}

n
= —Z le[)m(tz) - xj(t2) — x1(t1) - xj(tl)]
j=2
Since only neuron 1 changes state, x(t;)=xt,), j=2, 3, 4, ...n, and hence

— Zn: [le : xj(tl)][)ﬂ(fl) - XI(tz)]



Proof (continued)

— i[wl Xt 1)][X1(f1) —xi(, )]
= \

(S) (D)

 Observations:

— When the state changes from -1 to 1, (S) has to be +ve and
(D) is —ve; so AE becomes negative.

— When the state changes from 1 to -1, (S) has to be -ve and
(D) is +ve; so AE becomes negative.
* Therefore, Energy for any state change always
decreases.



The Hopfield net has to “converge”
in the asynchronous mode of
operation

* As the energy E goes on decreasing, it

has to hit the bottom, since the weight and
the state vector have finite values.

* That is, the Hopfield Net has to converge
to an energy minimum.

* Hence the Hopfield Net reaches stability.



