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Tiling Algorithm (repeat)

• A kind of divide and conquer strategy
• Given the classes in the data, run the 

perceptron training algorithm
• If linearly separable, convergence without 

any hidden layer
• If not, do as well as you can (pocket 

algorithm)
• This will produce classes with 

misclassified points



Tiling Algorithm (contd)

• Take the class with misclassified points and 
break into subclasses which contain no outliers

• Run PTA again after recruiting the required 
number of perceptrons

• Do this until homogenous classes are obtained
• Apply the same procedure for the first hidden 

layer to obtain the second hidden layer and so 
on



Illustration

• XOR problem
• Classes are

(0, 0)

(1, 1)
(0, 1)

(1, 0)



As best a classification as possible

(0,0) (1,0)

(0,1) (1,1)
+ve

+ve

-ve

-ve



Classes with error

(0,0)

(1,1)

(0,1)

(1,0)

outlier



How to achieve this classification

• Give the labels as shown: eqv to an OR 
problem

(0,0) (1,1)

(0,1)

(1,0)

outlier

+-



The partially developed n/w

• Get the first neuron in the hidden layer, 
which computes OR

x1x2

h1

0.5

1.0
1.0



Break the incorrect class

(1,1)

(0,1)

(1,0)

outlier

(1,0)
(0,1)

(1,1)

(0,0)

+

-

Don’t care:
Make +



Solve classification for h2

(1,1)

(1,0)

(0,1)

(0,0)

+

-

This is x1x2



Next stage of the n/w

x1x2

h1h2 0.5

1.0
1.0

-1.0 -1.0

-1.5
Computes x1x2 Computes x1+x2



Getting the output layer

• Solve a tiling algo
problem for the 
hidden layer

00111

11101

11110

01000

yh1

x1x2

h1

(x1+x2)
x1x2

(1,1)
(0,0)

(0,1)

(1,0)

+-

AND problem



Final n/w

x1x2

h1h2 0.5

1.0
1.0

-1.0 -1.0

-1.5

Computes x1x2 Computes x1+x2

• AND n/w

1.0 1.0

0.5

y
Computes x1x2



Lab exercise

Implement the tiling algorithm and run it for
1. XOR
2. Majority
3. IRIS data



Hopfield net
• Inspired by associative memory which means 

memory retrieval is not by address, but by part 
of the data.

• Consists of
N neurons fully connected with 
symmetric weight strength wij =  wji

• No self connection. So the weight matrix is 0-
diagonal  and symmetric. 

• Each computing element or neuron is a linear  
threshold element with threshold = 0. 
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Figure: A neuron in the Hopfield Net.
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Example
w12 = w21 = 5
w13 = w31 = 3
w23 = w32 = 2
At time t=0

s1(t) = 1
s2(t) = -1
s3(t) = 1
Unstable state: Neuron 1 will flip.
A stable pattern is called an 

attractor for the net.
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Figure: An example Hopfield Net



Stability
• Asynchronous mode of operation: at any instant a 

randomly selected neuron compares the net input with 
the threshold.

• In the synchronous mode  of  operation  all neurons  
update themselves simultaneously at any instant of  
time. 

• Since  there  are feedback connections in the Hopfield  
Net  the  question  of stability arises. At every time 
instant the network  evolves  and finally settles into a 
stable state.

• How does the Hopfield Net function as associative
memory ?

• One  needs  to  store or stabilize a vector which  is  the  
memory element. 



Energy consideration

• Stable patterns correspond to minimum 
energy states.

• Energy at state <x1, x2, x3, …, xn>
• E = -1/2∑j∑j<>iwjixixj

• Change in energy always comes out to be 
negative in the asynchronous mode of 
operation. Energy always decreases.

• Stability ensured.



Hopfield Net is a fully connected 
network

n

1

2

3

4

.  .  .  .

• ith neuron is connected to (n-1) neurons



Concept of Energy

• Energy at state s is given by the equation:

[ nn xxwxxwxxwsE 1131132112)( +++−= K

++++ nn xxwxxw 223223 K

M
]nnnn xxw )1()1( −−+



Connection matrix of the network, 
0-diagonal and symmetric

n1 n2 n3 .  .  . nk

n1

n2

n3
. 
.
.

nk

j

i wij

0 – diagonal



State Vector

• Binary valued vector: value is either 1 or -1
X = <xn xn-1 .  .  .  . x3 x2 x1>

• e.g. Various attributes of a student can be 
represented by a state vector

x1

x2

x3

x5

x4hair color Ram = 1
~(Ram) = -1

height
address

roll number



Relation between weight vector W 
and state vector X

W ⋅ TX

Weight vector Transpose of state vector

3

21

2

5

3

1

-11
















023
205
350
















−
1

1
1

W ⋅ =TX

















023
205
350

=W















−
1

1
1

=TX

For example, in figure 1,
At time t = 0, state of the neural network is:
s(0) = <1, -1, 1> and corresponding vectors are as shown.

Fig. 1



W.XT gives the inputs to the 
neurons at the next time instant
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).sgn( TXW
This shows that the 
n/w will change state



Energy Consideration

• E(0) = -[(5*1*-1)+(3*1* 1)+(2*-1*1)] = 4

3

21

2

5

3

1

-11

At time t = 0, state of the neural network is:
s(0) = <1, -1, 1>

3

21

2

5

3

-1

-1-1

The state of the neural network under 
stability is <-1, -1, -1>

E(stable state) = - -[(5*-1*-1)+(3*-1* -1)+(2*-1*-1)] = -10



State Change

• s(0) = <1, -1, 1…>
• s(1) = compute by comparing and summing
• x1(t=1)=sgn[Σj=2

nw1jxj]
= 1 if Σj=2

nw1jxj > 0
= -1 otherwise



Theorem

• In the asynchronous mode of operation, 
the energy of the Hopfield net always
decreases.

• Proof:

M

[ )()()()()()()( 11111311131211121 txtxwtxtxwtxtxwtE nn+++−= K

++++ )()()()( 1122131223 txtxwtxtxw nnK
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Proof
• Let neuron 1 change state by summing and comparing
• We get following equation for energy

[ )()()()()()()( 22112321132221122 txtxwtxtxwtxtxwtE nn+++−= K
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Proof: note that only neuron 1 changes state
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Since only neuron 1 changes state, xj(t1)=xj(t2), j=2, 3, 4, …n, and hence



Proof (continued)

• Observations:
– When the state changes from -1 to 1, (S) has to be +ve and 

(D) is –ve; so ∆E becomes negative.
– When the state changes from 1 to -1, (S) has to be -ve and 

(D) is +ve; so ∆E becomes negative.

• Therefore, Energy for any state change always 
decreases.
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The Hopfield net has to “converge”
in the asynchronous mode of 

operation
• As the energy E goes on decreasing, it 

has to hit the bottom, since the weight and 
the state vector have finite values.

• That is, the Hopfield Net has to converge 
to an energy minimum.

• Hence the Hopfield Net reaches stability.


