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Hopfield net (recap of main points)

* |nspired by associative memory which means
memory retrieval is not by address, but by part

of the data.
« Consists of
N neurons fully connected with
symmetric weight strength w; = w;
« No self connection. So the weight matrix is O-

diagonal and symmetric.

 Each computing element or neuron is a linear
threshold element with threshold = 0.



Connection matrix of the network,
0-diagonal and symmetric

0 — diagonal



Example

Wip = Wpq =
Wiz = W3y = 3
W3 = W3y = 2

At time t=0
S4(t) =1
S,(t) = -1
S,(t) =1

Unstable state: Neuron 1 will flip.
A stable pattern is called an
attractor for the net.

Figure: An example Hopfield Net



Concept of Energy

* Energy at state s is given by the equation:

E(s) = —|w,xx, + w,x,x, +...+ W, x,x,

+ Wy Xy Xy . W, XX+

+Wn—1)n n—l) nJ



Relation between weight vector W

and state vector X

w . X7
Weight vector Transpose of state vector

For example, in figure 1,
At time t = 0, state of the neural network is:
s(0) = <1, -1, 1> and corresponding vectors are as shown.
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W.XT gives the inputs to the
neurons at the next time instant
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Theorem

* In the asynchronous mode of operation,
the energy of the Hopfield net always
decreases.

* Proof:

E(t) = —[W12X1(t1)xz(t1) + wisxi(t)x3(t1) + ...+ winxi(£1) xa(21)

+ wax2(t)x3(t1) + ... + wanx2(t1) xa(t1) +

+ Wn - DX (n - 1)(t1)xn(t1)]



Proof

* Let neuron 1 change state by summing and comparing
* We get following equation for energy

E(t2) = —[m axi(22)x2(22) + wisxi(t2)x3(22) +. . .+ wWinxi(t2) xa(22)

+ wasxa(t2)x3(t2) + ... + wanx2(t2) xn(t2) +

+ W(n. st 1)(t2)xn(t2)]



Proof: note that only neuron 1 changes state

AE = E(t2) — E(th)
— _{[lexl(tz)xz (tz) + W13x1(t2)x3 (t2) T Wlnxl(tz)x” (tz)]

— [, (82, (1) + WX, ()%, (1) + ..+ Wy, %, (8)x, (1)}

n
= —Z le[)m(tz) - xj(t2) — x1(t1) - xj(tl)]
j=2
Since only neuron 1 changes state, x(t;)=xt,), j=2, 3, 4, ...n, and hence

— Zn: [le : xj(tl)][)ﬂ(fl) - XI(tz)]



Proof (continued)

— i[wl Xt 1)][X1(f1) —xi(, )]
= \

(S) (D)

 Observations:

— When the state changes from -1 to 1, (S) has to be +ve and
(D) is —ve; so AE becomes negative.

— When the state changes from 1 to -1, (S) has to be -ve and
(D) is +ve; so AE becomes negative.
* Therefore, Energy for any state change always
decreases.



The Hopfield net has to “converge”
in the asynchronous mode of
operation

* As the energy E goes on decreasing, it

has to hit the bottom, since the weight and
the state vector have finite values.

* That is, the Hopfield Net has to converge
to an energy minimum.

* Hence the Hopfield Net reaches stability.



Training of Hopfield Net

» Early Training Rule proposed by Hopfield

* Rule inspired by the concept of electron
spin

* Hebb’s rule of learning

— If two neurons / and j have activation x; and x;
respectively, then the weight w; between the
two neurons is directly proportional to the
product x; -x;/.e.

Wij OC)CZ-°)CJ-



Hopfield Rule

* Training by Hopfield Rule
— Train the Hopfield net for a specific memory
behavior
— Store memory elements

— How to store patterns?



Hopfield Rule

* To store a pattern
<X,y X gy «-ery X3 Xop X1>
make

1
W. = *X.*X.
o(mn=1D "

« Storing pattern is equivalent to ‘Making
that pattern the stable state’



Training of Hopfield Net

 Establish that
<X, X gy «eery X3 Xop X1>

IS a stable state of the net

* To show the stability of
<X, X gy «-eey X3 Xop X1>

impress at (=0
t t t t t
<X, X 4, ..., Xig X, XES



Training of Hopfield Net

 Consider neuron | at t=1

a (t=1)=sgn(net (¢t =0))

net.(t =0) = Zn:wl.j (x,;(=0))

Jj#i, j=1



Establishing stability

i w,x (= 0)
1

= o X (=00
1

— T —1); (x,(t =0) -[x,;(¢
1

S = (x.(t = 0)) ',-_le‘,-:,-
1

- oo (e =0) - (n - D)

= x,(t = 0)

Thus

x,(t=1)=sg( x,(t=0)

0)) -(x (¢

0)]°

0))



Example

1

We want <1, -1, 1> as ©
stored memory
(A—@®)

Calculate all the W; =
values Initially
WAB= 1/(3'1)*1 *'1 1
=-1/2 0.5 . 0.5
Similarly wgs = -1/2 (A—B)
and we, = % T 05 -

Is <1, -1, 1> stable? After calculating weight values



Observations

* How much deviation can the net tolerate?

* What if more than one pattern is to be
stored?



Storing k patterns

* Let the patterns be:
P, <X, X, 4, ..cy X3, Xp, X;>7
P,: <X, X, 4 ..y X3, X, X;>2

Pth pattern

: k
Pe <X, X 4, -oeey X3 Xp, X4>

« Generalized Hopfield Rule is:

. <
Wl] = X, X
] (n—l)pzz; i ]|p




Storing k patterns

« Study the stability of
<X, Xpgy «eey X35 Xoy X4>

* Impress the vector at t=0 and observer
network dynamics

* Looking at neuron / at t=7, we have



Examining stability of the gt
pattern

x (M,

= sgn(net, (1) |q);neti(1) |q: Zn:wij -xj(O) |q

Jj=1,j#i

w; - x;(0)],

1 k
- A O, O 5O

1 k
= m[p%;iqxi(()) %, (0) [, 1-x,(0) |, + 1)
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Examining stability of the gt"
pattern

Thus

x(D=sgn> ", O+ ",
=sgn _0+x(0)]

X, (0)
(n —1)

—SgnE L Z(x O], x;(0)], )+X(0)]

p=l.p#q
——

Small when k << n /



Storing k patterns

» Condition for patterns to be stable on a
Hopfield net with n neurons is:

K<<n
* The storage capacity of Hopfield net is
very small
* Hence it is not a practical memory element



