
CS623: Introduction to 
Computing with Neural Nets

(lecture-11)
Pushpak Bhattacharyya

Computer Science and Engineering 
Department
IIT Bombay



Hopfield net (recap of main points)
• Inspired by associative memory which means 

memory retrieval is not by address, but by part 
of the data.

• Consists of
N neurons fully connected with 
symmetric weight strength wij =  wji

• No self connection. So the weight matrix is 0-
diagonal  and symmetric. 

• Each computing element or neuron is a linear  
threshold element with threshold = 0. 



Connection matrix of the network, 
0-diagonal and symmetric
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Example
w12 = w21 = 5
w13 = w31 = 3
w23 = w32 = 2
At time t=0

s1(t) = 1
s2(t) = -1
s3(t) = 1
Unstable state: Neuron 1 will flip.
A stable pattern is called an 

attractor for the net.
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Figure: An example Hopfield Net



Concept of Energy

• Energy at state s is given by the equation:

[ nn xxwxxwxxwsE 1131132112)( +++−= K

++++ nn xxwxxw 223223 K

M
]nnnn xxw )1()1( −−+



Relation between weight vector W 
and state vector X

W ⋅ TX

Weight vector Transpose of state vector
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For example, in figure 1,
At time t = 0, state of the neural network is:
s(0) = <1, -1, 1> and corresponding vectors are as shown.

Fig. 1



W.XT gives the inputs to the 
neurons at the next time instant
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This shows that the 
n/w will change state



Theorem

• In the asynchronous mode of operation, 
the energy of the Hopfield net always
decreases.

• Proof:

M
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Proof
• Let neuron 1 change state by summing and comparing
• We get following equation for energy
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Proof: note that only neuron 1 changes state
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Since only neuron 1 changes state, xj(t1)=xj(t2), j=2, 3, 4, …n, and hence



Proof (continued)

• Observations:
– When the state changes from -1 to 1, (S) has to be +ve and 

(D) is –ve; so ∆E becomes negative.
– When the state changes from 1 to -1, (S) has to be -ve and 

(D) is +ve; so ∆E becomes negative.

• Therefore, Energy for any state change always 
decreases.
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The Hopfield net has to “converge”
in the asynchronous mode of 

operation
• As the energy E goes on decreasing, it 

has to hit the bottom, since the weight and 
the state vector have finite values.

• That is, the Hopfield Net has to converge 
to an energy minimum.

• Hence the Hopfield Net reaches stability.



Training of Hopfield Net

• Early Training Rule proposed by Hopfield
• Rule inspired by the concept of electron 

spin
• Hebb’s rule of learning

– If two neurons i and j have activation xi and xj
respectively, then the weight wij between the 
two neurons is directly proportional to the 
product xi ·xj i.e.

jiij xxw ⋅∝



Hopfield Rule

• Training by Hopfield Rule
– Train the Hopfield net for a specific memory 

behavior 
– Store memory elements
– How to store patterns?



Hopfield Rule

• To store a pattern
<xn, xn-1, …., x3, x2, x1>

make
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• Storing pattern is equivalent to ‘Making 
that pattern the stable state’



Training of Hopfield Net

• Establish that
<xn, xn-1, …., x3, x2, x1>

is a stable state of the net

• To show the stability of 
<xn, xn-1, …., x3, x2, x1>

impress at t=0
<xt

n, xt
n-1, …., xt

3, xt
2, xt

1>



Training of Hopfield Net

• Consider neuron i at t=1
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Establishing stability
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Example

• We want <1, -1, 1> as 
stored memory

• Calculate all the wij
values

• wAB = 1/(3-1) * 1 * -1 
= -1/2

• Similarly wBC = -1/2 
and wCA = ½

• Is <1, -1, 1> stable?
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Observations

• How much deviation can the net tolerate?
• What if more than one pattern is to be 

stored?



Storing k patterns
• Let the patterns be:

P1 : <xn, xn-1, …., x3, x2, x1>1

P2 : <xn, xn-1, …., x3, x2, x1>2

.

.

.
Pk : <xn, xn-1, …., x3, x2, x1>k

• Generalized Hopfield Rule is:
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Storing k patterns

• Study the stability of
<xn, xn-1, …., x3, x2, x1>

• Impress the vector at t=0 and observer 
network dynamics

• Looking at neuron i at t=1, we have



Examining stability of the qth

pattern
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Examining stability of the qth

pattern
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Storing k patterns

• Condition for patterns to be stable on a 
Hopfield net with n neurons is:

k << n
• The storage capacity of Hopfield net is 

very small
• Hence it is not a practical memory element


