CS623: Introduction to Computing with Neural Nets (lecture-12)

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Training of Hopfield Net

- Early Training Rule proposed by Hopfield
- Rule inspired by the concept of electron spin
- Hebb's rule of learning
 - If two neurons *i* and *j* have activation x_i and x_j respectively, then the weight w_{ij} between the two neurons is directly proportional to the product $x_i \cdot x_j i.e.$

$$W_{ij} \propto X_i \cdot X_j$$

Hopfield Rule

• To store a pattern

<*X_n*, *X_{n-1}*,, *X₃*, *X₂*, *X₁*> make

$$w_{ij} = \frac{1}{(n-1)} \cdot x_i \cdot x_j$$

• Storing pattern is equivalent to 'Making that pattern the stable state'

Training of Hopfield Net

Establish that

 $< x_n, x_{n-1}, \dots, x_3, x_2, x_1 >$ is a stable state of the net

To show the stability of

 $< x_n, x_{n-1}, ..., x_3, x_2, x_1 >$ impress at *t=0*

$$< X_{n}^{t}, X_{n-1}^{t}, \dots, X_{3}^{t}, X_{2}^{t}, X_{1}^{t} >$$

Training of Hopfield Net

Consider neuron *i* at *t=1*

$$a_{i}(t=1) = \operatorname{sgn}(net_{i}(t=0))$$
$$net_{i}(t=0) = \sum_{j\neq i, j=1}^{n} w_{ij} \cdot (x_{j}(t=0))$$

Establishing stability

$$\sum_{j \neq i, j=1}^{n} w_{ij} x_{j} (t = 0)$$

$$= \frac{1}{(n-1)} \sum_{j} (x_{i} (t = 0)) \cdot (x_{j} (t = 0)) \cdot (x_{j} (t = 0))$$

$$= \frac{1}{(n-1)} \sum_{j} (x_{i} (t = 0)) \cdot [x_{j} (t = 0)]^{2}$$

$$= \frac{1}{(n-1)} (x_{i} (t = 0)) \cdot \sum_{j=1, j \neq i} 1$$

$$= \frac{1}{(n-1)} \cdot (x_{i} (t = 0)) \cdot (n-1)$$

$$= x_{i} (t = 0)$$
Thus ,
 $x_{i} (t = 1) = \text{sgn}(-x_{i} (t = 0))$

Observations

- How much deviation can the net tolerate?
- What if more than one pattern is to be stored?

Storing k patterns

• Let the patterns be:

$$P_{1} : < X_{n}, X_{n-1}, \dots, X_{3}, X_{2}, X_{1} > {}^{\prime}$$

$$P_{2} : < X_{n}, X_{n-1}, \dots, X_{3}, X_{2}, X_{1} > {}^{2}$$

$$P_k : \langle X_n, X_{n-1}, \dots, X_3, X_2, X_1 \rangle^k$$

• Generalized Hopfield Rule is:

$$wij = \frac{1}{(n-1)} \sum_{p=1}^{k} x_i \cdot x_j |_p$$

Pth pattern

Storing k patterns

Study the stability of

 $< X_n, X_{n-1}, \dots, X_3, X_2, X_1 >$

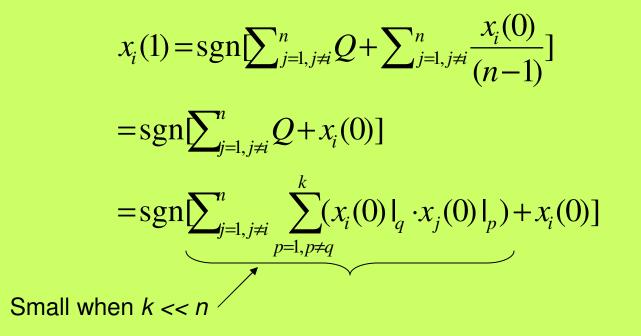
- Impress the vector at t=0 and observer network dynamics
- Looking at neuron *i* at *t=1*, we have

Examining stability of the qth pattern

 $\begin{aligned} x_{i}(1)|_{q} \\ &= \operatorname{sgn}(net_{i}(1)|_{q}); net_{i}(1)|_{q} = \sum_{j=1, j \neq i}^{n} w_{ij} \cdot x_{j}(0)|_{q} \\ &= \frac{1}{(n-1)} \left[\sum_{p=1}^{k} x_{i}(0)|_{p} \cdot x_{j}(0)|_{p} \right] \cdot x_{j}(0)|_{q} \\ &= \frac{1}{(n-1)} \left[\sum_{p=1, p \neq q}^{k} x_{i}(0)|_{p} \cdot x_{j}(0)|_{p} \right] \cdot x_{j}(0)|_{q} + \frac{1}{(n-1)} x_{i}(0)|_{q} \cdot x_{j}(0)|_{q} \cdot x_{j}(0)|_{q} \\ &= \frac{1}{(n-1)} \left[\sum_{p=1, p \neq q}^{k} x_{i}(0)|_{q} \cdot x_{j}(0)|_{p} \right] + \frac{1}{(n-1)} (x_{i}(0)|_{q}) \cdot [x_{j}(0)|_{q}]^{2} \\ &= Q + \frac{1}{(n-1)} \cdot x_{i}(0)|_{q} \cdot 1 \\ &= Q + \frac{x_{i}(0)|_{q}}{(n-1)} \end{aligned}$

Examining stability of the qth pattern

Thus



Stability for k memory elements

 Condition for patterns to be stable on a Hopfield net with *n* neurons is:

k << n

- The storage capacity of Hopfield net is very small
- Hence it is not a practical memory element

Hopfield Net: Computational Complexity

- Hopfield net is an $O(n^2)$ algorithm, since
- It has to reach stability in $O(n^2)$ steps

Hopfield Net

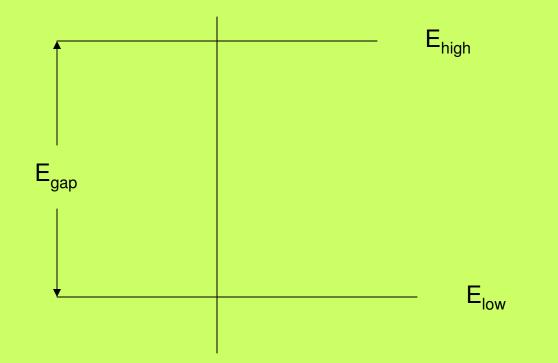
Consider the energy expression

$$E = - [w_{12} x_1 x_2 + w_{13} x_1 x_3 + \dots + w_{1n} x_1 x_n]$$

- *E* has *[n(n-1)]/2* terms
- Nature of each term
 - w_{ii} is a real number
 - $-x_i$ and x_i are each +1 or -1

No. of steps taken to reach stability

•
$$E_{gap} = E_{high} - E_{low}$$



Analysis of the weights and consequent E_{high} and E_{low}

 W_{il} is any weight with upper and lower bounds as W_{max} and W_{min} respectively. Suppose

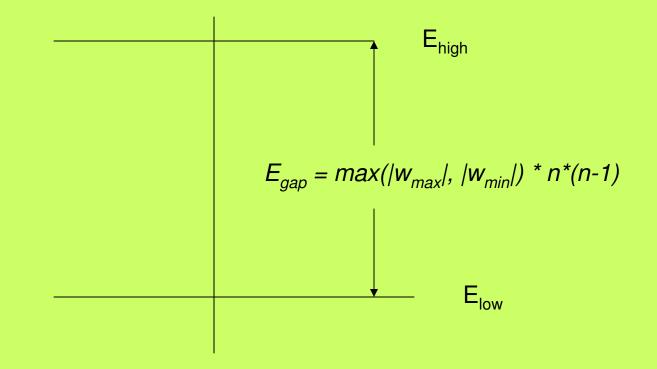
$$\begin{split} w_{min} &\leq w_{ij} \leq w_{max} \\ w_{max} > w_{min} \\ \bullet \text{ Case 1: } w_{max} > 0, \ w_{min} > 0 \\ E_{high} &= (1/2) \ ^* w_{max} \ ^* n \ ^* (n-1) \\ E_{low} &= -(1/2) \ ^* w_{max} \ ^* n \ ^* (n-1) \end{split}$$

Continuation of analysis of E_{high} and E_{low}

- Case 2: $w_{min} < 0$, $w_{max} < 0$ $E_{high} = (1/2) * w_{min} * n * (n-1)$ $E_{low} = -(1/2) * w_{min} * n * (n-1)$
- Case 3: $w_{max} > 0$, $w_{min} < 0$ $E_{high} = (1/2) * max(|w_{max}|, |w_{min}|) * n*(n-1)$ $E_{low} = -(1/2) * max(|w_{max}|, |w_{min}|) * n*(n-1)$

The energy gap

• In general,



To find ΔE_{min}

 $\Delta E_p = (x_p^{initial} - x_p^{final}) * net_p$ where ΔE_p is the change in energy due to the p^{th} neuron changing activation.

$$|\Delta E_{p}| = |(x_{p}^{initial} - x_{p}^{final}) * net_{p}|$$
$$= 2 * |net_{p}|$$
where $net_{p} = \sum_{j=1, j \neq p}^{n} W_{pj} X_{j}$

To find ΔE_{min}

- $[\Sigma_{j=1, j\neq p}^{n} w_{pj} x_{j}]_{min}$ is determined by the precision of the machine computing it.
- For example, assuming 7 places after the decimal point, the value cannot be lower than 0.0000001 [it can be 0, but that is not of concern to us, since the net will continue in the same state]
- Thus ΔE_{min} is a constant independent of *n*, determined by the precision of the machine.

Final observation: *o*(*n*²)

- It is <u>possible</u> to reach the minimum independent of n.
- Hence in the worst case, the number of steps taken to cover the energy gap is less than or equal to

 $[max(|w_{max}|,|w_{min}|) * n * (n-1)] / constant$

 Thus stability has to be attained in O(n²) steps

Hopfield Net for Optimization

- Optimization problem

 Maximizes or minimizes a quantity

 Hopfield net used for optimization

 Hopfield net and Traveling Salesman Problem
 - Hopfield net and Job Scheduling Problem

The essential idea of the correspondence

- In optimization problems, we have to *minimize* a quantity.
- Hopfield net minimizes the energy
- THIS IS THE CORRESPONDENCE